
Prime Computer, Inc.

DOC4033-193P
Source Level Debugger
User's Guide
DBG Revision 19.2

/T"
n_B I H

:-'■:■• ■-.':-:„ _ s « ~ — » ~ i g

\ !

, v

•rf* * » *

Source Level Debugger
User's Guide

DOC4033-193
Second Edition

by
A. Paul Gioto

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Independent
Product Release (IPR) 1.0 - 19.1 (Rev. 1.0 - 19.1).

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l i cense .

Copyright © 1984 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic
Design Management System, EDMS, PDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PW200, PST100, 2250, and THE PROGRAMMER'S COMPANION are
trademarks of Prime Computer, Inc.

CREDITS

Data Entry: Nancy Cormier
Hope Eldredge
Lydia Herrera
Sabra MacArthur
Mary Mixon

Il lustrations: Marcella Gallardo

Graphic Support: Therese Bacharz
Leo Maldonado
Mike Moyle
George Shaw
Robert Stuart

Ed i t i ng : Mary Callaghan
Joan Frongello
Betty B. Hoskins

Technical Support: Stephen Evans Alley
James Craig Burley
Evelyn Burns
Larry Epstein
Ritchie Kolnos
Anne Ladd
Debra Minard

PRINTING HISTORY — SOURCE LEVEL DEBUGGER USER'S GUIDE

E d i t i o n

First Edition
Update 1
Update 2
Second Edition

Date

January, 1980
December, 1980
July, 1982
January, 1984

Number

IDR4033
PTU2600-068
PTU2600-085
DOC4033-193

17.2
18.1
19.0

1.0 - 19.1

The Second Edition is a complete rewrite of IDR4033.
Therefore, there are no vertical bars in the page margins to
indicate changes since the First Edition.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers

Software Distribution
Prime Computer, Inc.
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053

Prime levees

Communications Services
MS 15-13, Prime Park
Natick, MA 01760
(617) 655-8000 X4837

Customers Outside U.S.

Contact your local Prime
subsidiary or distributor.

Contents

ABCUT THIS BOOK

PART I — OVERVIEW

1 WHAT IS THE SOURCE LEVEL DEBUGGER?

In t roduc t ion
How Does the Debugger Work?
Contents of This Book
Other Useful Related Documents

2 OVERVIEW OF DEBUGGER FEATURES

In t roduc t ion
Program Control Features
Data Manipulation Features
Tracing Features
Debugger Control Features
Information Request Features
Miscellaneous Features

PART II — USING THE DEBUGGER

GETTING STARTED

In t roduc t ion
Invoking the Debugger
Executing Your Program Within

Debugger
Examining Your Source Program
Suspending Program Execution
Continuing Program Execution
Examining and Modifying Program

Data
Tracing a Value
Getting Help With Debugger Commands
Leaving the Debugger
Debugging Examples

3-5
3-8
3-11
3-13

3-13
3-16
3-18
3-20
3-20

4 CONVENTIONS, TERMS, AND CONCEPTS

I n t r o d u c t i o n 4 - 1
Debugger Command Format Conventions 4-2
P r o g r a m B l o c k s 4 - 3
E n v i r o n m e n t s 4 - 7
L a n g u a g e o f E v a l u a t i o n 4 - 8A c t i v a t i o n s 4 - 9
A c t i v e P r o g r a m B l o c k s 4 - l (
I d e n t i f y i n g V a r i a b l e s 4 - 1 C
I d e n t i f y i n g S t a t e m e n t s 4 - 1]
S p e c i a l C h a r a c t e r s 4 - 1 6
S p e c i a l S y m b o l s 4 - 2]

5 BREAKPOINTS AND PROGRAM CONTRCL

I n t r o d u c t i o n 5 - 1
Activating Program Execution 5-2
Continuing Program Execution 5-3
S e t t i n g B r e a k p o i n t s 5 - 3

E n t r y / e x i t B r e a k p o i n t s 5 - 5
A c t i o n L i s t s 5 - 8
Condi t iona l Breakpo in ts 5-1<
The Breakpoint Counter 5-1C
Breakpo in t Ignore F lag 5-1 I

Displaying Your Breakpoints 5-11
Deleting Your Breakpoints 5-23
Finding the Execution Environment

P o i n t e r 5 - 2 :
Transferring Program Control 5-2^
Defining the Main Program 5-2(

6 DATA MANIPULATION

I n t r o d u c t i o n 6 - 1
The Evaluation Command (:) 6-2
T h e T Y P E C o m m a n d 6 - 1 !
T h e L E T C o m m a n d 6 - i :
The ARGUMENTS Command 6-1'
Changing the Evaluation Environment 6-l(
Changing the Language of Evaluation 6-2(
Referencing Debugger-defined

V a r i a b l e s 6 - 2 '
Referencing External Variables 6-2"

7 SINGLE STEPPING AND CALLING PROGRAM BLOCKS

Introduction
Single Stepping
Calling Program Blocks

8 TRACING

I n t r o d u c t i o n 8 1
Setting Tracepoints
Displaying and Deleting Tracepoints 8-3
V a l u e T r a c i n g 8 - 4
E n t r y T r a c i n g 8 - 1 1
S t a t e m e n t T r a c i n g 8 - 1 2
Tracing Your Active Program Blocks 8-14
Erasing the Call/Return Stack With

U N W I N D 8 - 2 3

9 CUSTOMIZING YOUR DEBUGGER COMMANDS — MACROS

I n t r o d u c t i o n 9 - 1
C r e a t i n g a n d U s i n g M a c r o s 9 - 2
D i s p l a y i n g A l l Yo u r M a c r o s 9 - 9

.0 MODIFYING AND SAVING DEBUGGER COMMANDS

In t roduc t ion
Using the Command Line Editor
Modifying the Most Recent Command
Modifying Breakpoints and Macros
Saving Your Breakpoints,

Tracepoints, and Macros
Restoring Saved Breakpoints,

Tracepoints, and Macros 10-10

OTHER FEATURES

Int roduct ion
Using Multiple Commands With SOURCE
Using SOURCE Subcommands EX, NAME,

and RENAME
Executing PRIMOS Commands from

Debugger
Suspending Your Debugger Sessions
Repeating Debugger Commands

11-1
11-2

11-2

PART III — ADVANCED TECHNIQUES AND FEATURES

12 ADVANCED MACROS

OTHER ADVANCED FEATURES

In t roduc t ion
Using DBG Command Line Options
Using Compiler Options
Entering Command Line Arguments

with CMDLINE
Using Advanced Information

Request Commands

About
This Book

PURPOSE AND AUDIENCE

This book is a user's guide to Prime's Source Level Debugger, which is
a powerful, interactive, high-level language debugger that helps you
find out why your program failed at execution time.

This book documents Debugger features up to and including Master Disk
Revision 19.2 (Rev. 19.2) plus the features contained in this
Independent Product Release (IPR) 1.0 - 19.1 (Rev. 1.0 - 19.1). These
features include Debugger support for seven Prime high-level languages
— FORTRAN IV, FORTRAN 77, Pascal, PL/I Subset G, COBCL 74, RPG II
V-mode, and C.

As a user's guide, this book is written and organized for users who are
not necessarily familiar with the Debugger. You do not need to be an
experienced programmer or know anything about assembly language or
machine architecture to use this book or learn the Debugger. All you
need is the ability to write programs in any of the Prime high-level
languages mentioned above.

HCW TO USE THIS BOOK

This book is divided into three parts. Part I (Chapters 1 and 2)
explains what the Source Level Debugger is, how it works, and what it
can do. Chapter 1 also gives a chapter-by-chapter description of the
contents of this book and offers some useful related documents. Part
II (Chapters 3 to 11) teaches you how to invoke the Debugger and how to
use it. Part III (Chapters 12 and 13) discusses advanced techniques
and features. Examples are given extensively throughout the book.

Twelve appendixes follow Part III. Appendixes A to G offer sample
debugging sessions with each of Prime's high-level languages. Appendix
H offers some special considerations for using the Debugger with all
languages. Appendix I offers some sample debugging strategies.
Appendix J summarizes all of the Debugger's 53 commands in alphabetical
order, giving a brief description of each command, a reference to the
chapter in which it is discussed, and brief descriptions of command
l ine arguments and opt ions . Append ix K is a g lossary o f
Debugger-related terms used throughout the book. Appendix L lists
Debugger commands chapter by chapter.

If you are not familiar with the Debugger, read Chapters 1,2, and 3,
in that order. Chapter 3, GETTING STARTED, teaches you how to invoke
the Debugger and begin using some of its fundamental commands. You
should be able to begin using the Debugger after reading this chapter.
After using the commands presented in Chapter 3, you should read
Chapter 4, CONVENTIONS, TERMS, AND CONCEPTS, and then the other
chapters to learn the vast assortment of Debugger features. You may
also want to look at Appendix I, STRATEGIES IN DEBUGGING, and the
appendixes that offer sample sessions with the languages you use.

If you are already familiar with the Debugger, turn to the sections in
Parts II and III that explain the Debugger features with which you
might need help. You should also use Appendix J, which summarizes all
Debugger commands and command line syntax.

For your convenience, the first page of each chapter in Parts II and
III lists the commands that are discussed in that chapter. Also, a
chapter-by-chapter list of all Debugger commands is given just before
the index in Appendix L. Official command line formats are highlighted
with gray shades throughout the book (excluding Appendix J). It is
hoped that these highlighting techniques will help you locate a command
more quickly and easily.

DOCUMENTATION CONVENTIONS

The following conventions are used throughout this book:

Convention Explanation Example

under l in ino
in examples
of computer-
user dialog

under l in ing
for abbrevia
t i o n s

In examples of computer-user
dialog, user input is under
lined and system output is
not .

In command line formats,
legal abbreviations for com
mand names and option names
are underlined.

> TYPE A + B
fixed decimal (4)

RESUBMIT

UPPERCASE Words in uppercase signify
command names, option names,
variable names, and the
names of other data objects.
They may be entered in
either uppercase or lower
case.

The RESTART command
The -DEBUG option

UPPERCASE
in examples

lowercase

User input in examples
of computer-user dialog
appears in uppercase for
consistency.
In command and statement
formats, words in lowercase
indicate items for which you
must substitute a suitable
value.

> MACRO RS -DELETE
>

LOADSTATE filename

brackets
[]

e l l i p s i s

In command formats, brackets
enclose a list of one or
more optional items. Choose
none, one, or more of these
items. (Do not confuse these
brackets with action list or
command list brackets.)

In command formats, braces
enclose a vertical list of
items. Choose one and only
one of these items.

An ell ipsis indicates that
the preceding item may be
repeated.

STEPIN [value]

C_f
ETRACE J ARGS

[,variable-2 ...]

In command and statement
formats, parentheses must be
entered exactly as shown.

Whenever a hyphen appears in
a command line option, it
is a required part of that
op t ion .

In command and statement
formats, backward and for
ward slashes must be entered
exactly as shown.

In statement formats, a plus
sign must be entered exactly
as shown.

[(a rgument - l i s t)]

MACRO -EDIT

program-block-name\

+l ine-offset

Angle brackets must be used
as shown to separate the
elements of a pathname.

In addition to some illus
trations, gray shades appear
on all Debugger command line
formats throughout the book.
(The shades do not appear in
Appendix J.)

<FOREST>BEACH>LEAF

What Is the
Source Level

Debugger?

INTRODUCTION

What is the Source Level Debugger? The Source Level Debugger is
P r ime 's power fu l , easy - to -use , i n te rac t i ve , h igh - l eve l - l anguage
debugging tool that helps you find out why your program failed at
execution time.

Why is the Source Level Debugger easy to use? Through the use of
several Debugger commands, you can control and monitor the execution of
your program at the source code level. This means the Debugger
understands the language in which your program is coded. You can
"talk" with the Debugger interactively while you debug.

Can novice programmers use the Debugger? Yes — you do not need to
know anything about assembly language or machine architecture to use
the Debugger. All you need is the ability to write programs in one of
these seven Prime high-level languages:

• FORTRAN IV

• FORTRAN 77

• Pascal

• PL/I Subset G

COBOL 74

RPG II V-mode

Second Edition

DOC4033-193

You simply create and edit your program using one of Prime's text
edi tors, then compi le, load, execute, and test your program
interactively under the control of the Debugger.

Does one Debugger handle programs written in all of these languages?
Yes, because the Debugger is multilingual. Prime's Source Level
Debugger understands the syntax of all languages. It communicates with
you in your program's language, switching from one language syntax to
another, if necessary. This is particularly useful when your programs
call procedures, functions, subroutines, or other programs that are
written in different languages. You need only learn one set of
Debugger commands to debug a program written in any language.

Figure 1-1 illustrates the Debugger's multilingual capabilities — how
it helps you get rid of bugs in programs written in seven of Prime's
high-level languages.

HCW DOES THE DEBUGGER WORK?

Prime's Source Level Debugger can run on any Prime CPU capable of
supporting 64V or 321 addressing mode. This includes Prime's 50 Series
machines. In addition to the Debugger itself, your system would
require Prime-supplied software comprising a software development
environment — the PRIMOS operating system, compilers, loaders,
libraries, as well as other utilities such as Prime's text editors,
EDITOR and EMACS.

Once you have the necessary software, you can debug by following a
simple four-step process:

1. Compile your program with the -DEBUG option.

2. Load your program.

3. Execute your program.

4. Enter the Debugger and begin debugging.

During Step 1, compilation, the language compiler translates your
program into binary form and adds debugging information, such as
information about variables and locations of instructions corresponding
to source statements in the object program.

Step 2, loading, produces an executable program (runfile) plus
additional debugging information — a symbol table that describes the
name, location, and attribute of each source program variable, and a
statement map that contains the location of compiled code corresponding
to each source language statement.

Second Edition

DOC4033-193

Program execution takes place at Step 3. At this point, your program
wi l l e i t he r execu te success fu l l y o r unsuccess fu l l y. I f i t i s
unsuccessful, your output will be incorrect or a runtime error will
prevent your program from completing execution.

Now you will want to go on to Step 4 and begin debugging. After you
enter the Debugger using the DBG command, the Debugger uses the special
debugging information in the symbol table to relate the object (binary)
code, which the machine understands, to the high-level source code,
which you understand. Therefore, you and the Debugger can "talk" to
each other interactively at the source language level and the Debugger
can perform its operations at the machine language level. This process
makes it easy for you to manipulate program execution from within the
Debugger. As Chapters 2 and 3 point out, you can execute your program,
suspend execution, examine and trace the values of variables, continue
execution, and do a lot more.

Figure 1-2 illustrates the four-step process.

Step 1:
Compile program with

-DEBUG option

Source file:
FORTRAN IV
FORTRAN 77
Pascal
PL/I Subset G
COBOL74
RPG II
C

Object
(binary)

file

Step 4:
Interactive
debugging

Step 2:
Load program

Source Level
Debugger

Runfile
and

symbol table
Step 3:
Execute
program

Debugging Begins With a Four-Step Process
Figure 1-2

Second Edition

WHAT IS THE DEBUGGER?

CONTENTS OF THIS BOOK

Here is a chapter-by-chapter summary of the contents of this book:

Part I — Overview

» Chapter 1 describes what the Source Level Debugger is, how it
works, what this book contains, and useful related documents.

• Chapter 2 overviews the Debugger's features and commands.

Part II — Using the Debu'

Chapter 3 gets you started by showing you how to enter the
Debugger and how to use some of the Debugger's fundamental
commands.

• Chapter 4 defines conventions, terms, and concepts used
throughout this book.

• Chapter 5 discusses breakpoints and most of the Debugger's
program control features.

• Chapter 6 discusses data manipulation features.

• Chapter 7 discusses single stepping and calling program blocks.

• Chapter 8 discusses tracing capabilities.

• Chapter 9 shows you how customize your Debugger commands by
creating and using command macros.

• Chapter 10 shows you how to modify your Debugger commands and
save breakpoints, tracepoints, and macros.

Chapter 11 discusses miscellaneous Debugger features.

Part III — Advanced Techniques and Features

Chapter 12 lists some examples of advanced macros.

Chapter 13 discusses miscellaneous advanced Debugger features.

Second Edition

DOC4033-193

Appendix A gives sample debugging sessions with programs written
in FORTRAN IV.

Appendix B gives sample debugging sessions with FORTRAN 77.

Appendix C gives sample debugging sessions with Pascal.

Appendix D gives sample debugging sessions with PL/I Subset G.

Appendix E gives sample debugging sessions with COBOL 74.

Appendix F gives sample debugging sessions with RPG II.

Appendix G gives sample debugging sessions with C.

Appendix H offers some special considerations for using the
Debugger with all languages.

Appendix I offers some strategies for debugging.

Appendix J summarizes all of the Debugger's commands, giving
each command's format syntax and defining each part of that
syntax.

Appendix K is a glossary of Debugger-related terms used
throughout this book.

Appendix L lists Debugger commands chapter by chapter, providing
you with a quick reference.

OTHER USEFUL RELATED DOCUMENTS

In addition to the Source Level Debugger User's Guide, some other
documents would be useful at your installation. These documents
inc lude:

• Prime User's Guide — This guide provides complete information
on al l Pr ime system ut i l i t ies, including instruct ions for
creating, loading, and executing programs written in Prime's
high-level languages.

• The guides that document the Prime high-level languages you use:

The FORTRAN Reference Guide (for FORTRAN IV)

The FORTRAN 77 Reference Guide

The Pascal Reference Guide

The PL/I Subset G Reference Guide

Second Edition

WHAT IS THE DEBUGGER?

The COBOL 74 Reference Guide

The RPG II V-mode Compiler Reference Guide

The C User's Guide

SEG and LOAD Reference Guide — If you wish to know and control
the load process in more detail and use the full range of Prime
loader capabilities, get this book. Ordinarily, to load and
execute programs you need only the information given in the
Prime User's Guide.

EMACS Primer and EMACS Reference Guide — These guides describe
Prime's screen text editor, EMACS. The Primer is written for
users not familiar with EMACS. The reference guide is for users
already familiar with EMACS.

New User's Guide to EDITOR and RUNOFF — This guide contains
complete information about Prime's line text editor, EDITOR, and
Prime's text formatting utility, HJNOFF. It also provides a
basic introduction to the Prime system for users with little or
no computer experience.

PRIMOS Commands Reference Guide — This guide provides a
complete description of all PRIMOS level commands.

Subroutines Reference Guide — This guide describes Prime's
large selection of applications-level subroutines and PRIMOS
operating system subroutines, which can be declared in your
program and then referenced from any point within the program.

Assembly Language Programmer's Guide — This guide contains
information needed to write programs written in the Prime Macro
Assemb le r (PMA) l anguage . I t a l so desc r i bes P r ime 's
machine-level debugger, the 64V-mode Prime Symbolic Debugger
(VPSD).

Guide to Prime User Documents — Descriptions of all Prime user
documents are listed in this guide. Each document includes a
description of the product, printing history, audience level,
and more.

The on-line HELP facility. (Enter HELP DBG.)

The most recent Software Release Document (MRU) for your release
of software.

Second Edition

Overview of
Debugger Features

INTRODUCTION

Prime's Source Level Debugger provides you with a host of powerful
debugging features that help you track down problems in your program
execution. You can implement these features through 53 Debugger
commands. Although you may never use all of these commands — some
commands are much more fundamental than others — they are always at
your disposal whenever you might need them.

As Chapter 1 pointed out, the Debugger allows you to control, monitor,
and manipulate the execution of your program. This chapter overviews
the Debugger's features, which can generally be categorized in the
following groups:

• Program control

• Data manipulation

• Tracing

• Debugger control

• Information request

• Miscellaneous

Second Edition

DOC4033-193

Although these Debugger features and their associated commands
can be grouped together similarly by function, this book does
not necessarily present them according to these groups.
Rather, this book presents these features and commands in such
a way that you can best learn, understand, and use the Debugger
overall. Debugger commands from different groups work in
conjunction with each other.

PROGRAM CONTROL FEATURES

Several Debugger features, known as program control features, allow you
to use the Debugger to control the execution of your program. For
example, you can start and restart execution, suspend execution,
execute one statement at a time, and call any procedure, function, or
subroutine. These program control capabilities are used to discover
where and why your program failed. In other words, the Debugger lets
you freeze the action at strategic points in your program's execution
so you can see what is really happening — or not happening.

Specifically, here are the program control features along with the
program control commands associated with these features:

• Restarting the program — at any time during your debugging
session, you may begin execution of the program being debugged,
no matter where execution is suspended (RESTART command).

• Setting breakpoints — you may suspend your program's execution
at any executable statement or at any entry to or exit from a
procedure, function, or subroutine (BREAKPOINT command).

• Using breakpoint action lists — you may specify that one or
more Debugger commands be executed each time a breakpoint occurs
(BREAKPOINT command).

• Using conditional action lists — you may specify that a
breakpoint action list be executed only if a given condition is
true (BREAKPOINT and IF commands).

• Setting conditional breakpoints — you may specify that a
breakpoint occur only if a given condition is true (BREAKPOINT
command).

• Continuing program execution — you may resume program execution
after execution has been suspended (CONTINUE command).

• Single stepping — you may execute one or more statements at a
time; step across, into, and out of procedures, functions, or
subroutines (STEP, STEPIN, IN, and OUT commands).

Second Edition

Overview of features

Displaying breakpoints and tracepoints — you may display one or
more breakpoints or tracepoints (LIST and LISTALL commands) .

Deleting breakpoints and tracepoints — you may delete one or
more breakpoints or tracepoints (CLEAR and CLEARALL commands).

Transferring control — you may transfer the position at which
execution is to resume from one statement in your program to
another (GOTO command).

Calling procedures, functions, and subroutines — from Debugger
command level, you may call a procedure, function, or
subroutine, supplying argument lists if needed (CALL command).

Defining the main program — you may tell the Debugger what
program block to recognize as the main program (MAIN command).

Erasing the call/return stack — you may erase the call/return
stack, which is a list of currently active program blocks in
your program's execution (UNWIND command).

Figure 2-1 lists the
alphabetical order.

Debugger's program control commands

BREAKPOINT LIST
CALL LISTALL
CLEAR MAIN
CLEARALL OUT
CONTINUE RESTART
GOTO STEP
IF STEPIN
IN UNWIND

Program Control Commands
Figure 2-1

DATA MANIPULATION FEATURES

Another very important part of debugging, in addition to controlling
program execution, is the ability to examine, evaluate, and modify
expressions. These features will be referred throughout this book as
data manipulation features. Whenever execution is suspended, you can
examine the values of a variable or expression, examine its data type,
modify the value of a variable or expression, and use built-in source
language functions to evaluate a variable or expression. These data
manipulation features are very useful in detecting errors because you

Second Edition

DOC4033-193

can see what values your data objects hold anywhere in the execution of
your program.

Specifically, here are the Debugger's data manipulation features and
their related commands:

• Examining variables — the Debugger can display the value of any
scalar, array, or structured variable (: command).

Evaluating expressions — you may evaluate any expression
allowed by any source language (: command).

Assigning values — you may modify the value of a variable (LET
command).

Examining data types — you may examine the data type of a
variable or expression (TYPE command).

Examining the values of arguments — you may examine the values
of arguments passed to procedures, functions, or subroutines
(ARGUMENTS command).

Using built-in functions — you may use several source language
built-in functions to help evaluate a variable or expression.

Changing the language of evaluation — you may change the
language in which the Debugger evaluates expressions at any time
during debugging (LANGUAGE command).

Setting the print mode — you may explicitly set the print mode
to be used to evaluate a variable (PMODE command).

Figure 2-2 lists the Debugger's data manipulation commands in
alphabetical order.

ARGUMENTS
LANGUAGE
LET
PMODE
TYPE

Data Manipulation Commands
Figure 2-2

Second Edition

OVERVIEW OF FEATURES

TRACING FEATURES

As its name implies, the Debugger's tracing features offer you the
ability to trace the progress of your program's execution from
beginning to end. For example, you can have trace messages displayed
at strategic points during program execution and you can trace the
value of a variable as it changes throughout program execution.

Specifically, here are the Debugger's tracing features and related
commands:

i Setting tracepoints — you may specify that a trace message be
displayed at the execution of a specified statement or at the
entry to or exit from a procedure, function, or subroutine
(TRACEPOINT command).

Tracing values — you may specify that a message be displayed
whenever the value of a specified variable changes during
execution. This message tells you the old value, the new value,
and location in your program where the change was detected
(WATCH, VTRACE, UNWATCH, and WATCHLIST commands).

> Tracing statements — you may specify that a trace message be
displayed prior to the execution of each statement and/or each
labelled statement (STRACE command).

• Tracing at entries and exits — you may specify that a message
be displayed each time any procedure, function, or subroutine is
called or returns (ETRACE command).

• Tracing the currently active program blocks — the Debugger can
display a list of program block calls that are currently active
throughout your program's execution (TRACEBACK command).

Figure 2-3 lists the Debugger's tracing commands in alphabetical order.

ETRACE UNWATCH
STRACE VTRACE
TRACEBACK WATCH
TRACEPOINT WATCHLIST

Tracing Commands
Figure 2-3

Second Edition

DOC4033-193

DEBUGGER CONTROL FEATURES

Another group of features can be generally categorized as Debugger
control features. Debugger control commands make the Debugger
interpret or treat information in a particular way.

Specifically, here are the Debugger control features and related
commands:

• Changing the evaluation environment — you may change the
environment (program block) in which the Debugger evaluates
expressions (ENVIRONMENT and ENVLIST commands).

• Using the Debugger's command line editor — you may edit the
most recent command given by invoking the Debugger's command
line editor (RESUBMIT command).

• Displaying action lists and macros — you may display the
contents of breakpoint action lists and macro command lists
immediately prior to their execution (ACTIONLIST command).

• Changing special symbols — you may change the Debugger's
interpretation of certain characters that have special meaning
to the Debugger (PSYMBQL and SYMBOL command).

Figure 2-4 lists the Debugger control commands in alphabetical order.

ACTIONLIST
ENVIRONMENT
ENVLIST

PSYMBOL
RESUBMIT
SYMBOL

Debugger Control Commands
Figure 2-4

Second Edition

OVERVIEW OF FEATURES

INFORMATION REQUEST FEATURES

There are four Debugger commands that request information. These
information request features and their related commands are:

• Displaying the execution environment pointer — you may request
that the Debugger display the location of the execution
environment pointer, which is the place where program execution
is to resume (WHERE command).

• Displaying attributes about a program block or statement — you
may request that the Debugger display certain information about
a program block or statement (INFO command).

• Displaying a list of segments — you may request that the
Debugger display a list of segments in memory that are currently
in use (SEGMENTS command).

• Displaying the status of your debugging environment — you may
request that the Debugger display information about your current
debugging environment (STATUS command).

INFO
SEGMENTS
STATUS
WHERE

Information Request Commands
Figure 2-5

MISCELLANEOUS FEATURES

The Debugger has many useful features that really do not fit into any
logical category, so they are referred to as miscellaneous features.

Specifically, here are the Debugger's miscellaneous features and
related commands:

• Examining the source file — you may look at, but cannot change,
your source files while debugging (SOURCE command).

• Creating Debugger command macros — you may create a macro to
take the place of one or more Debugger commands (MACRO and
MACROLIST commands).

Second Edition

DOC4033-193

• Saving breakpoints, tracepoints, and macros — you may save all
of your breakpoints, tracepoints, and macros in PRIMOS files,
then use them again in future debugging sessions (SAVESTATE and
LOADSTATE commands).

• Getting help — you may ask the Debugger for help in
understanding command syntax definitions (HELP command).

i Entering PRIMOS commands — you may enter and execute certain
PRIMOS commands from Debugger command level (! command).

• Suspending the debugging session — you may temporarily suspend
your debugging session and return to PRIMDS command level (PAUSE
command).

• Entering the machine level debugger — you may invoke the
64V-mode Prime Symbolic Debugger (VPSD) from Source Level
Debugger command level (VPSD command).

> Repeating Debugger commands — you may repeat the execution of a
Debugger command (* and AGAIN commands).

▶ Leaving the Debugger — you may leave the Source Level Debugger
and return to PRIMDS command level (QUIT command).

Figure 2-6 lists the Debugger's miscellaneous commands in alphabetical
o rder.

AGAIN QUIT
CMDLINE SAVESTATE
HELP SOURCE
LOADSTATE VPSD
MACRO
MACROLIST
PAUSE

Miscellaneous Commands
Figure 2-6

Second Edition

Getting Started

lapcer:

D B G B R E A K P O I N T L E T
1ESTART CONTINUE WATC.

4 D L I N E : H E L P
I C E T Y P E Q U I T

INTRODUCTION

Now that you know what the Source Level Debugger is and what it can do,
you are ready to invoke the Debugger and begin using it.

This chapter shows you how to invoke the Debugger and use some of the
Debugger's fundamental commands. Specifically, this chapter teaches
you how to:

• Invoke the Debugger from PRIMDS command level with the DBG
command.

• Execute your program from within the Debugger with the RESTART
and CMDLINE commands.

• Examine your source program with the SOURCE command.

• Suspend program execution with the BREAKPOINT command.

• Continue program execution with the COOTINUE command.

• Examine and modify program data with the : (evaluation), TYPE,
and LET commands.

• Trace the changing value of a variable through the execution of
your program with the WATCH command.

Second Edition

DOC4033-193

• Get help in understanding Debugger command syntax with the HELP
command.

Leave the Debugger and return to PRIMDS with the QUIT command.

After reading this chapter and learning the commands listed above, you
should be able to debug simple programs. However, it is recommended
that you keep reading and learn the vast assortment of powerful
debugging capabilities that are presented in the remainder of this
book.

INVOKING THE DEBUGGER

In order to use the Debugger with programs written in any of Prime's
seven supported high-level languages, you must compile and load your
program successfully. As was pointed out in Part I, the Debugger
uncovers program errors at execution time or runtime, while the program
executes. Therefore, an executable file or runfile must be created
before debugging can take place.

There are four simple steps to invoking the Debugger:

1. Compile your program with the -DEBUG option.

2. Load your program's object (binary) file.

3. Execute your program.

4. Enter the Debugger with the DBG command.

Compiling with -DEBUG Option

You must tell the compiler that you intend to use the Debugger by
entering the -DEBUG compile-time option on the command line. For
example, if you want to debug a FORTRAN 77 program named TEST.F77, you
would enter this command:

OK, F77 TEST -DEBUG

Similarly, if you were compiling a Pascal program named TEST.PASCAL,
you would enter:

OK, PASCAL TEST -DEBUG

Second Edition

GETTING STARTED

The -DEBUG option causes the compiler to generate the special Debugger
information contained in the symbol table, which was described in
Chapter 1.

The -DEBUG option, which can be abbreviated -DE, is used with all seven
of the supported Prime languages — FORTRAN IV, FORTRAN 77, Pascal,
PL/I Subset G, COBOL 74, RPG II V-mode, and C.

At Rev. 18, Prime employed new, more efficient file naming
conven t ions ca l led the su ffix conven t ions . The su ffix
conventions identify the source file with a compiler suffix,
the object (binary) file with a .BIN suffix, and the executable
file with a .SEG suffix. The suffix conventions are explained
in the Prime User's Guide. The old-style prefix file naming
conventions may still be used.

For your convenience, Table 3-1 lists the PRIMDS compile commands,
source file suffixes, and language libraries for all seven languages.

Table 3-1
Compile Commands, Source File Suffixes, and Libraries

Language
Compile
Command

Compiler Source
File Suffix

Language
Library

FORTRAN IV FTN • FTN none

FORTRAN 77 F77 .F77 none

Pascal PASCAL .PASCAL PASLIB

PL/I Subset G PL1G .PL1G PL1GIB

COBOL 74 CBL .CBL CBLLIB

RPG II V-mode VRPG .RPG VRPGLB

C CC .CC CCLIB

Second Edition

DOC4033-193

Loadina Your Proaram

There is no change in the way a program is loaded. Programs that are
compiled with the -DEBUG option are loaded the same way as those that
are not. Here is an example of loading a COBOL 74 program:

OK, SEG -LOAD
$ LOAD TEST
$ LIBRARY CBLLIB
$ LIBRARY
LOAD COMPLETE
$ QUIT
OK,

Enter SEG's load subprocessor.
Load the program's object file.
Load the COBOL library.
Load the standard system libraries.
Loader indicates load is complete.
Save executable file and return to PRIMDS,

See Table 3-1 for the appropriate language library to load.

Executing Your Program

When you execute your program in the usual way, one of four things
could happen:

1. Your program runs until completion and produces correct
r esu l t s .

2. Your program runs until completion and produces incorrect
results or no results at all.

3. Your program terminates abnormally, displaying an error message
and returning to PRIMDS command level.

4. Your program does not terminate.

If you are fortunate enough to have case 1, then you probably will not
need the Debugger. Otherwise, in cases 2, 3, and 4, the Debugger can
be very useful when you ask "What happened?". (See Appendix I for
sample strategies in debugging.)

Entering the Debuaoer

Enter the Debugger from PRIMDS command level by issuing the DBG
command. The format of the DBG command is:

Second Edition

GETTING STARTED

The program-name is the name of the program file you want to debug.
The program-name is an executable (SEG) file. For example, if your
executable file were called TEST.SEG, you would enter this command:

OK, DBG TEST

It is not necessary, though acceptable, to enter TEST.SEG.

option-1, option-2, etc., are optional command line parameters, which
you may specify to make the Debugger perform or not perform certain
functions during its operations. (These options are described in
Chapter 13.)

When you enter the DBG command, the Debugger reads the program and
symbol table into memory. Then, an identification message, which
includes the software release number, is displayed at your terminal.
For example:

OK, DBG TEST

* * n h n * *Dbg** revision 1.0 - 19.1 (30-November-1983)

The right angle bracket shown above is the Debugger's prompt symbol.
When this symbol appears, it means that you have entered the Debugger
and that the Debugger is ready for command input. Debugger commands
are given at this prompt.

EXECUTING YOUR PROGRAM WITHIN DEBUGGER

In trying to find out what went wrong at runtime, you can use the
Debugger to manipulate the execution of your program. You can easily
activate the execution of your program from within the Debugger using
the RESTART command.

The RESTART command, abbreviated RST, starts or "restarts" program
execution at any point it is given within the Debugger.

Second Edition

DOC4033-193

A Proqram Example

To demonstrate the RESTART command and the other commands in this
chapter, the following PL/I Subset G program is used. At the end of
the chapter, a Pascal program and a FORTRAN IV program, each having
runtime errors, will demonstrate how the Debugger commands that you are
about to learn can solve runtime problems.

The PL/I-G program follows:

TEST : PROCEDURE;
DECLARE (X, Y, Z) FIXED BIN(15);
DECLARE (A, B, C) FIXED DEC (4, 2);

X = 5;
Y = 3;
Z = X + Y;
PUT SKIP LIST ('The integer sum is', Z);
PUT SKIP;
A = 5.5;
B - 4.3;
C = A + B;
PUT SKIP LIST ('The decimal sum is', C) ;
PUT SKIP;
X = Z;
PUT SKIP LIST ('The integer sum is now', X + Y) ;
PUT SKIP;

END TEST;

This program adds two integers, adds two floating point numbers,
changes the value of one of the integers, and adds the integers again.
When the program executes, the three sums are displayed on the
terminal. The output looks like this:

The integer sum is

The decimal sum is

The integer sum is now

Second Edition

GETTING STARTED

Using RESTART

The following debugging session illustrates use of the RESTART command
wi th the PL/ I -G program. The RESTART command is g iven
twice — immediately upon entering the Debugger and immediately after
program execution is complete:

OK, DBG TEST

Dbg revision 1.0 - 19.1 (30-November-1983)

> RESTART

T h e i n t e g e r s u m i s f

The decimal sum is 9.80

The integer sum is now

**** Program execution complete.
> RESTART

T h e i n t e g e r s u m i s I

The decimal sum is 9.80

The integer sum is now

**** Program execution complete.
>

In the example above, notice how the program's output is displayed on
the terminal, as it should be. If the program's input and output
involved data files, then normal I/O to and from data files would take
place as well, without interference from the Debugger. Also notice the
convenient "Program execution complete" message.

For more information on the RESTART command, see Chapter 5.

Executing with Command Line Arguments Using CMDLINE

Sometimes the execution of your program may require command line
arguments. Suppose the PL/I-G program TEST had a command line argument
named MYFILE. You would normally execute the program this way:

OK, SEG TEST MYFILE

Second Edition

DOC4033-193

But since the argument MYFILE cannot be entered on the DBG command
line, the Debugger's CMDLINE command, abbreviated CL, allows you to
enter your arguments from within the Debugger.

Here is an example of CMDLINE:

OK, DBG TEST

Dbg revision 1.0 - 19.1 (30-November-1983)

> CMDLINE
Enter command line:
MYFILE

For more information on the CMDLINE command, see Chapter 13.

EXAMINING YOUR SOURCE PROGRAM

During most of your debugging sessions, you will want to examine the
contents of your source program. Examining your program is necessary
for determining the strategic locations in your program where certain
Debugger features are to be used.

You can easily examine your program on your terminal from within the
Debugger using the SOURCE command. SOURCE saves you the trouble of
dealing with hard (paper) copies. The SOURCE command, which displays
the contents of a file, works like Prime's line EDITOR. The SOURCE
command, followed by certain EDITOR subcommands, makes you feel as
though you are indeed using the EDITOR. (For more information on
EDITOR, see the New User's Guide to EDITOR and RUNOFF.)

The format of the SOURCE command, abbreviated SRC, is:

source-command [ar

The source-command is any EDITOR subcommand that can be used with
SOURCE. A subset of 14 EDITOR subcommands that examine — but do not
modify — a file is provided. These subcommands, along with brief
descriptions, are listed in Table 3-2. (See also the New User's Guide
to EDITOR and RUNOFF.)

The argument is an EDITOR source subcommand object such as a line
number or text string. It may or may not be used, depending on which
EDITOR source subcommand you specify.

Second Edition

GETTING STARTED

Table 3-2

Source EDITOR Subcommands
(Abbreviations are underlined.

Subcommand Descr ip t ion

TOP Position line pointer to top of file.

BOTTOM Position pointer to bottom of file.

BRIEF Don't print target lines of FIND, LOCATE, POINT,
and NEXT operations.

VERIFY Print target lines of FIND, LOCATE, POINT, and
NEXT operations.

PRINT Print one or more lines.

WHERE Print current line number.

POINT Position to specific line.

NEXT Move line pointer forward or backward.

MODE Set edit mode; the only mode implemented is
NUMBER/NNUMBER.

LOCATE

PSYMBOL

SYMBOL

Locate line with the specified text string.

Locate line with the specified text string
beginning in a given column.
Print character symbols; see also Debugger
PSYMBCL command (Chapter 4).
Set character symbol; see also Debugger SYMBCL
command (Chapter 4).

Repeat command line; see also Debugger REPEAT
(*) command (Chapter 11).

See also the New User's Guide to EDITOR and RUNDFF.

Second Edition

DOC4033-193

A typical SOURCE command line, without an argument, looks like this:

> SOURCE TOP

The command shown above will take the EDITOR line pointer to the top of
your program file, just above the first line.
A typical SOURCE command line with an argument looks like this:

> SOURCE PRINT 23

The command shown above will display 23 lines of your program file,
beginning with the current line.
The following example demonstrates the SOURCE command used with the
PRINT, NEXT, LOCATE, and POINT subcommands:

> SOURCE PRINT 5
1: TEST : PROCEDURE;
2: DECLARE (X, Y, Z) FIXED BIN(15);
3: DECLARE (A, B, C) FIXED DEC (4, 2) ;
4: X = 5;
5: Y = 3;

> SOURCE NEXT
: Z = X + Y;

> SOURCE NEXT 3
>: A = 5.5;

> SOURCE LOCATE X + Y
15: PUT SKIP LIST ('The integer sum is now', X + Y);

> SOURCE POINT 4
\i X = 5;

>

Notice how source file line numbers appear to the left of the source
code. These line numbers are used in many of the Debugger's functions.

For more information on the SOURCE command, including three additional
source subcommands (EX, NAME, and RENAME), see Chapter 11.

Second Edition

GETTING STARTED

SUSPENDING PROGRAM EXECUTION

One of the most fundamental and useful Debugger commands is BREAKPOINT,
abbreviated BRK. The BREAKPOINT command can suspend execution almost
anywhere in your program. The suspension of execution, commonly called
breaking, allows you to examine data at strategic points of the
execution — at the beginning or end of a loop, for example. Examining
data while execution is frozen is one of the fundamental ways of
finding out why your program failed. A breakpoint is like a snapshot
of a moving object. You can see what's really happening while the
action is frozen.

The BREAKPOINT command, abbreviated BRK, has many powerful
capabilities. All of these capabilities are discussed in Chapter 5.
For now, simple examples of BREAKPOINT will be used to get you started.

Breakpoints are set on any executable statement in your program —
statements that perform some action. The BREAKPOINT command is
followed by a breakpoint-identifier, which usually specifies the number
of the line in your program on which you want to break. For example:

> BREAKPOINT 6

The command shown above will cause the Debugger to suspend execution
immediately before source line number 6 of your program. (You can
determine a source line number by examining your source file with the
SCURCE command.)

Line 6 might contain an executable statement such as:

Z = X + Y;

Any attempt to break on non-executable syntax, such as a data
declaration, a comment, or a DATA DIVISION line in COBOL, will generate
the following error message:

No such statement.

Second Edition

DOC4033-193

The following example sets a breakpoint on line 12 of the sample PL/I-G
program, then executes the program:

OK, DBG TEST

* * n h n * * revision 1.0 - 19.1 (30-November-1983)

> SOURCE PRINT 23
1: TEST : PROCEDURE;
2: DECLARE (X, Y, Z) FIXED BIN(15) ;
3: DECLARE (A, B, C) FIXED DEC (4, 2) ;
4: X = 5;
5: Y = 3;
6: Z = X + Y;
7: PUT SKIP LIST ('The integer sum is1, Z) ;
8: PUT SKIP;
9: A = 5.5;

10: B = 4.3;
11: C = A + B;
12: PUT SKIP LIST ('The decimal sum is', C) ;
13: PUT SKIP;
14: X = Z;
15: PUT SKIP LIST ("The integer sum is now', X + Y) ;
16: PUT SKIP;
17: END TEST;

BOTTOM
> BREAKPOINT 12
> RESTART

T h e i n t e g e r s u m i s i

**** breakpointed at TEST\12
>

In the example shown above, execution stops just before line 12, and
the information on line 12 is not output. Notice the breakpoint
message that tells you the name of the program block (TEST) and the
line number on which the breakpoint occurred (12).

The Debugger allows you to display and delete breakpoints. For
complete information, see Chapter 5.

Second Edition

GETTING STARTED

CONTINUING PROGRAM EXECUTION

Whenever program execution has been suspended and you want to resume
execution, simply give the CONTINUE command, abbreviated C.

The following example uses a CONTINUE command to resume execution of
the PL/I-G program after it has been suspended with a breakpoint:

OK, DBG TEST

Dbg revision 1.0 - 19.1 (30-November-1983)

> BREAKPOINT 12
> RESTART

T h e i n t e g e r s u m i s ;

**** breakpointed at TEST\12
> CONTINUE

The decimal sum is 9.80

The integer sum is now

**** Program execution complete.
>

For more information on the CONTINUE command, see Chapter 5.

EXAMINING AND MODIFYING PROGRAM DATA

A breakpoint is usually set to allow examination and modification of
program data. This is known as data manipulation. There are several
data manipulation commands. Three of the most common are:

: (evaluation command)

TYPE

This chapter gives only simple examples of the Debugger's data
manipulation features. (For a full explanation and demonstration of
these features, see Chapter 6.)

Second Edition

DOC4033-193

The : Command

The : command, which is a colon on your keyboard, is used to examine
the value of any given variable or expression while program execution
is suspended. Commonly known as the evaluation command, : lets you
know that something has gone wrong with the logic of your program by
discovering unusual values assigned to variables or expressions.

To evaluate a variable or expression, specify the variable or
expression after the : command. The colon must be followed by a space.
For example:

> : X

> : X + Y

The Debugger outputs the value.

The following example breaks two times and evaluates some expressions
while execution is suspended:

OK, DBG TEST

Dbg revision 1.0 - 19.1 (30-November-1983)

> BREAKPOINT 7
> BREAKPOINT 15
> RESTART

**** breakpointed at TEST\7
> : Z
Z = 8
> CONTINUE

T h e i n t e g e r s u m i s L

The decimal sum is 9.80

**** breakpointed at TEST\15
> : X * Z + Y
b /
> CONTINUE

The integer sum is now

**** Program execution complete
>

For more information on the : command, see Chapter 6

Second Edition

GETTING STARTED

The TYPE Command

As its name implies, the TYPE command tells you the data type of any
given variable or expression. The TYPE command is useful for detecting
data type incompatibility. Often when a program has many variables and
expressions of many different complex data types, a type mismatch could
cause the program to fail.

To evaluate the data type of a variable or expression, specify the
variable or expression following the TYPE command. The Debugger
outputs the data type.

The following example uses the TYPE command twice:

> BREAKPOINT 7
> BREAKPOINT 12
> RESTART

**** breakpointed at TEST\7
> TYPE Z
fixed binary (15) automatic
> CONTINUE

The integer sum is

**** breakpointed at TEST\12
> TYPE A + B
fixed decimal (4)
>

For more information on the TYPE command, see Chapter 6.

The LET Command

The LET command allows you to assign a new value to any variable.
Assigning new values to variables lets you see what would happen to
your program execution, given these new values. With LET, you can feed
your program correct or incorrect values, and then study the output.

When you use the LET command, an expression is assigned to a variable
with an equals sign (=). The variable is on the left-hand side and the
expression is on the right.

Second Edition

DOC4033-193

Here is an example that uses the LET command:

> BREAKPOINT 5
> BREAKPOINT 14
> RESTART

**** breakpointed at TEST\5
> : X
X = 5
> LET X = 10
> : X
X - 10
> CONTINUE

The integer sum is

The decimal sum is 9.80

**** breakpointed at TEST\14
> : X
X = 10
> LET X = Z + X
> : X
X - 23
> CONTINUE

The integer sum is now

**** Program execution complete
>

For more information on the LET command, see Chapter 6

TRACING A VALUE

As was pointed out in Chapter 2, the Debugger has certain tracing
features. One useful tracing feature is value tracing, enabled with
the WATCH command. Value tracing simply means watching a variable as
its value changes during program execution. Tracing a variable's value
can help you pinpoint the spot where an unusual value is assigned.
Value tracing, in general, is more useful for debugging small programs.

To trace the value of one or more variables, specify those variables
following the WATCH command, which is abbreviated WA. When you specify
two or more variables, the variables must be separated by commas.

This chapter gives simple examples of value tracing. (For complete
information on the Debugger's tracing capabilities, see Chapter 8.)

Second Edition

GETTING STARTED

In the following example, the variable X is watched during the
execution of the PL/I-G program:

> WATCH X
> RESTART
The value of TEST\X has been changed at TEST\5

from 0
t o 5

T h e i n t e g e r s u m i s 8

The decimal sum is 9.80
The value of TEST\X has been changed at TEST\15

from 5

The integer sum is now

**** Program execution complete,
>

In the example above, notice that the variable name is given along with
the source line number, the old value, and the new value.

Second Edition

DOC4033-193

Here is another example that traces the changing value of a Pascal
array of characters. The Pascal program is displayed in the Debugger
session:

> SOURCE PRINT 23
1: PROGRAM Animal;
2: VAR
3: A : ARRAY[1..3] OF CHAR;
4: BEGIN
5: A := 'CAT';
6: A := 'DOG';
7: A := 'RAT*;
8: WRTTELN('The value of A is ', A)
9: END.

BOTTOM
> WATCH A
> RESTART
The value of ANIMAL\A has been changed at ANIMAL\6

from ''
t o ' C AT '

The value of ANIMAL\A has been changed at ANIMAL\7
from 'CAT'
to 'DOG'

The value of ANIMAL\A has been changed at ANIMAL\8
from 'DOG'
t o ' R AT '

The value of A is RAT

**** Program execution complete.
>

GETTING HELP WITH DEBUGGER COMMANDS

If you need help in remembering and understanding the functions of any
Debugger command while you are using the Debugger, the HELP command can
provide answers. The HELP command can display a list of all Debugger
commands, the syntax of any Debugger command, a list of all syntax
symbols used in Debugger command syntax descriptions, or the definition
of a command syntax symbol.

The format of the HELP command is:

Second Edition

GETTING STARTED

The command-name is the name or abbreviation of any Debugger command,
When you give a command name, its command line syntax is displayed:

> HELP TYPE
TYPE <expression>
> HELP WATCH
WAtch <var iable- l ist>

In the examples shown above, capital letters in command names identify
abbreviations. Words enclosed in angle brackets are command syntax
symbols.

The syntax-symbol is any symbol, such as variable-list, that is used in
command syntax descriptions. When you give a syntax symbol, a
definition of that symbol is displayed:

> HELP EXPRESSION
<EXPRESSION>:
any valid expression in the default evaluation language
>

If you specify -LIST, a list of all Debugger commands is displayed:

> HELP -LIST

If you specify -SYMJilST, a list of all Debugger syntax symbols used in
Debugger command syntax descriptions is displayed:

> HELP -SYMLLIST

If you just enter the command HELP by itself with no arguments, the
most recent documentation and the HELP command syntax are displayed:

> HELP
For help, refer to DOC4033-193 Source Level Debugger User's Guide,

HELP -LIST
HELP -SYW_LIST
HELP <command-name>
HELP <syntax-symbol>
>

prints a list of all DBG commands
prints a list of all syntax symbols
prints the syntax of <command-name>
prints the definition of <syntax symbol>

Second Edition

DOC4033-193

LEAVING THE DEBUGGER

Whenever you are finished using the Debugger and want to return to
PRIMDS command level, enter the QUIT command.

The format of the QUIT command, abbreviated Q, is:

Here is an example of the QUIT command:

> QUIT

DEBUGGING EXAMPLES

In the remainder of this chapter, some of the Debugger commands that
you just learned will be used to debug two programs. The first program
is written in Pascal. The second program is written in FORTRAN IV.
Both have logic problems that prevent the output of correct data.

Pascal Sample Program

Consider the following Pascal program:

PROGRAM Loop;
VAR

I : INTEGER;
CH : CHAR;

BEGIN
CH := 'A';
WRITELNCThe value of CH is initialized to *, CH);
FOR I := 1 TO 5 DO

CH := (SUCC(CH));
WRITELNCThe value of CH is now ', CH)

END.

(Debugger source line numbers have been added for your convenience

Second Edition

GETTING STARTED

This program is supposed to write out six consecutive capital letters,
A through F. The program compiles and loads successfully, but it
generates incorrect output:

OK, PASCAL LOOP -DEBUG
[PASCAL Rev. 19.2]
0000 ERRORS (PASCAL-REV 19.2)
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD LOOP
$ LIBRARY PASLIB
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
The value of CH is initialized to A
The value of CH is now F
OK,

You wonder why only the A and F are written out and suspect the problem
is within the FOR loop. You place a BREAKPOINT on line 10, the WRTTELN
statement, execute the program with RESTART, and examine the values of
CH and I while execution is suspended:

OK, DBG LOOP

Dbg revision 1.0 - 19.1 (30-November-1983)

> BREAKPOINT 10
> RESTART
The value of CH is initialized to A

**** breakpointed at LOOP\10
> : CH
CH = 'F'
> : I
1 = 5
> CONTINUE
The value of CH is now F

**** Program execution complete.
>

Second Edition

DOC4033-193

Now you've discovered the problem. You see that the first time line 10
is executed is when the value of CH becomes F and the FOR loop
completes execution. Only line 9 goes through the loop. To be sure,
you can trace the value of CH as it changes throughout the program:

> WATCH CH
> RESTART
The value of

from 'F'
t o ' A '

The value of
The value of

from 'A'
t o ' B »

The value of
from 'B1
t o ' C

The value of
from 'C*
t o ' D '

The value of
from 'D'
t o ' E f

The value of
from 'E'
t o ' F 1

LOOP\CH has been changed at LOOP\7

CH is initialized to A
LOOP\CH has been changed at LOOP\9

LOOP\CH has been changed at LOOP\9

LOOP\CH has been changed at LOOP\9

LOOP\CH has been changed at LOOP\9

LOOP\CH has been changed at LOOP\10

**** breakpointed at LOOP\10
> QUIT

Sure enough, the value of CH changes the way it should, but the WRTTELN
statement is not included in the loop. You realize that two or more
statements in Pascal — a compound statement — require the keyword
delimiters BEGIN and END. You correct the FOR Loop in your program:

FOR I := 1 TO 5 DO
BEGIN

CH := (SUCC(CH));
WRITELNCThe value of CH is now', CH)

END

Second Edition

GETTING STARTED

With this change, you compile, load, and execute the program again and
get correct output:

OK, SEG LOOP
The value of CH is initialized to A
The value of CH is now B
The value of CH is now C
The value of CH is now D
The value of CH is now E
The value of CH is now F

FORTRAN Sample Proqram

Consider the following FORTRAN IV program:

1: C Print the squares of the numbe
2: C
3: DO 100 I = 1, 10
4: J = SQUARE (I)
5: WRITE (1, 80) J
6: 80 FORMAT (15)
7: 100 CONTINUE
8: CALL EXIT
9: END

10:
11: INTEGER FUNCTION SQUARE (I)
12: SQUARE = I ** 2
13: RETURN
14: END

(Debugger source line numbers have been added for your convenience

Second Edition

DOC4033-193

This program is supposed to print out the squares of the numbers 1
through 10. The program compiles and loads successfully, but when you
execute it you get incorrect output:

OK, FTN SQUARES -64V -DEBUG
0000 ERRORS [<.MAIN.>fTN-REV19.2]
0000 ERRORS [<SQUARE>FTN-REV19.2]
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD SQUARES
$ LIBRARY
LOAD COMPLETE
$ EXECUTE

You must include the -64V option with the -DEBUG option when
you debug FORTRAN IV programs.

You get into the Debugger to try to determine what went wrong. You
place a breakpoint following the call to function SQUARE in order to
look at the returned value:

OK, DBG SQUARES

Dbg revision 1.0 - 19.1 (30-November-1983)

> BREAKPOINT 5
>

You begin program execution with the RESTART command, and execution
breaks at line 5:

> RESTART

**** breakpointed at $MAIN\5
>

Second Edition

GETTING STARTED

(The term $MAIN is supplied by the Debugger when a FORTRAN main program
block is not named.) At this breakpoint, you inspect the variables I
and J:

> : I
1 = 1
> : J
J = 0
>

You see that the value of I is correct. (I is the control variable for
the DO loop, and this is the first iteration through the loop.)
However, the value of J is wrong. Seeing this error, you decide to
suspend program execution earlier in the loop, inside function SQUARE,
immediately after the function value is computed:

> BREAKPOINT SQUARE\13
> CONTINUE

**** breakpointed at SQUARE\13
>

The BREAKPOINT command line shown above specifies the name of
the function (SQUARE) as well as the source line number (13).
Sometimes the name of a program block must be specified in this
way. For more information, see Chapters 4 and 5.

You look at the value of the returned function:

> : SQUARE
SQUARE = 4
>

You find the function value is correct, and you continue execution
until it breaks on line 5 again:

> CONTINUE

**** breakpointed at $MAIN\5
>

Second Edition

DOC4033-193

Once again, looking at the returned value:

> : J
J = 0
>

you find it wrong. You suspect that the data types of the SQUARE
function mismatch between the FORTRAN main program and SQUARE. This is
confirmed by examining the data types:

> TYPE SQUARE
entry constant (real*4 function)
> TYPE SQUARENSQUARE
integer*2 static
>

You see that the data types do indeed mismatch — REAL*4 vs.
INTEGER*2. Upon correcting, recompiling, and reloading the program,
you find that it works:

OK, DBG SQUARES

Dbg revision 1.0 - 19.1 (30-November-1983)

> RESTART

EXIT. Program exit from $MAIN\8 ($100+1)
> QUIT
OK,

Second Edition

Conventions, Terms,
and Concepts

INTRODUCTION

This chapter defines various Debugger conventions, terms, and concepts.
Before you learn about the other Debugger features that are presented
in the remainder of this book, you should read this chapter. The
conventions, terms, and concepts that are outlined in this chapter are
related to all Debugger functions.

The following topics are covered in this chapter:

• Debugger command format conventions

• Program blocks

• Environments

• Language of evaluation

• Ac t iva t ions

• Active program blocks

• Identifying variables

• Identifying statements

• Special characters

• Special symbols (PSYMBQL and SYMBOL commands)

Second Edition

DOC4033-193

DEBUGGER COMMAND FORMAT CONVENTIONS

General Format

Debugger commands are entered at the prompt character >, the right
angle bracket. The general command format is:

> command-name [modifier] [argument-1 [argument-2 ...]]

The command-name is the name of the Debugger command. The modifier is
an optional command modifier, such as ON or OFF. argument-1,
argument-2, etc., represent one or more optional command arguments,
such as an expression, symbol name, or statement identifier.

The exception to the format shown above is the evaluation command (:).
For more information on the evaluation command, see Chapter 6.

You may enter command line text in uppercase or lowercase
characters, since the Debugger maps lowercase characters to
uppercase, except characters appearing within paired quotes. A
line beginning with /* is interpreted as a comment and is
ignored by the Debugger.

Multiple Commands per Line

You may enter multiple Debugger commands on a single command line ty
placing the Debugger's separator character (a semicolon) between
commands. For example:

> BREAKPOINT 22; LET 1=8; RESTART

Commands are executed from left to right. If any command causes an
error, the text to the right of the erroneous command is ignored.

The semicolon separator character is interpreted literally as a
semicolon when it appears within a pair of quotes, within the square
brackets of an action list, or if it is preceded by an escape
character, which is an up-arrow or circumflex.

Second Edition

CONVENTIONS

PROGRAM BLOCKS

In its operations, the Debugger uses the names of program blocks to
identify a variable or statement. The term program block is used
throughout this book as a universal language-independent definition of
a main program, procedure, function, subroutine, BEGIN block, or any
other program unit in any of Prime's languages.

Brief definitions of what program blocks are in the context of the
seven supported languages follow.

FORTRAN IV and FORTRAN 77 Program Blocks

A FORTRAN program block is a main program, subroutine, or function. A
main program is identified by its name, if a name has been provided in
a FORTRAN PROGRAM statement. If a PROGRAM statement is not used, the
name $MAIN is provided. FORTRAN subroutines and functions are
identified by their respective names.

PL/I Subset G Program Blocks

A PL/I Subset G block is a procedure block or a BEGIN block. The
procedure block can be the main program or any other procedure.

A procedure block is identified fcy its procedure name. BEGIN blocks,
which are delimited by BEGIN and END statements, are identified by the
Debugger-supplied name, $BEGIN, followed by the source line number on
which the BEGIN block starts. For example, $BEGIN38 would identify a
BEGIN block that starts on source line number 38.

When two or more procedures or BEGIN blocks have identical names, you
must identify the nested program blocks in a way that wil l
differentiate them for the Debugger.

Consider Figure 4-1. Although it may be undesirable to use the program
block naming scheme shown in this figure, this diagram demonstrates how
the program block names are uniquely identified.

The program blocks in Figure 4-1 are uniquely identified as follows:

• External procedure A is identified by the reference A.

Internal procedure B inside external procedure A is identified
by the reference A.B.

• Internal BEGIN block inside internal procedure A.B is identified
by A.B.$BEGIN38. (The 38 is a sample line number.)

Internal procedure C may be referred to as C, A.C, B.C, or as
A.B.C because there are no other procedures named C.

Second Edition

DOC4033-193

Procedure A

$BEGIN

Procedure C

Procedure B

Procedure B

$BEGIN

Uniquely defined Program Blocks
Figure 4-1

Second Edition

CONVENTIONS

• External procedure B is identified by the reference B.

Internal procedure B inside external procedure B is identified
by the reference B.B.

• Internal BEGIN block inside internal procedure B.B is identified
by the reference B.B.$BEGIN23. (The 23 is a sample line
number.)

The Debugger will display the following error message when a program
block name is ambiguously identified:

ambiguous block reference

The Debugger always displays program block names in fully qualified
form.

Pascal Proqram Blocks

A Pascal program block is a main program, procedure, or function. It
is identified by the name provided in the PROGRAM, PROCEDURE, or
FUNCTION statement. If the main program name is not given in a PROGRAM
statement, then the name $$MAIN$$ is provided. The rules for
identifying names of Pascal nested procedures and functions are the
same as PL/I-G. (See the PL/I-G discussion and Figure 4-1 in the
previous section.)

COBOL 74 Program Blocks

A COBOL 74 program block is one complete program,
the name specified in the PROGRAM-ID statement.

It is identified by

RPG II Program Blocks

An RPG II program block is a main program or a subroutine. The
Debugger identifies the main program with the name RPG$MAIN. A
subroutine is identified fcy the name specified in the BEGSR statement.

C Program Blocks

A C program block is a function that can be either the main program or
any other function. All functions are identified fcy their function
names, which are supplied by the programmer.

Second Edition

DOC4033-193

Debuqqer-defined Blocks
The Debugger defines two program block names that may be used to
identify variables uniquely. They are:

• $DBG

• $EXTERNAL

$DBG Program Block: During every debugging session, the Debugger
creates a program block called $DBG. This block, which is invisible or
"imaginary" to users, is global to any program that you debug. That
is, anything that the Debugger defines within the $DBG block, such as a
Debugger-defined variable or built-in language function, is visible
within all user program blocks.

The Debugger defines three special Debugger-defined variables within
$DBG. They are $MR, $COUNT, and $COUNTERS. You can reference these
variables to provide you with special information. (See Chapter 6.)
The Debugger also defines built-in functions for the supported
languages so that you can use these functions to evaluate expressions
during your Debugger sessions. (See Chapter 6.)
The $DBG block name is useful when you are trying to reference a
Debugger variable when a user variable of the same name exists in the
current evaluation environment.

Figure 4-2 illustrates the imaginary $DBG block in relation to user
blocks. In a way, the $DBG block can be thought of as the invisible
"parent" to all user external blocks. In Figure 4-2, the shaded area
is invisible to the user. (For an explanation of how to use
Debugger-defined variables and built-in functions, see Chapter 6.)

$EXTERNAL Program Block: The Debugger's $EXTERNAL program block, which
is also invisible to users, may be used to reference user variables
that are declared to be external. This is useful when trying to
reference external variables that have not been declared in the program
block corresponding to the current evaluation environment. Structure
or record variable names must be qualified at the top level when used
with $EXTERNAL. (For an explanation of how to reference external
variables, see Chapter 6.)

CONVENTIONS

$DBG BLOCK

user main program

program
block

program
block

$DBG Program Block
Figure 4-2

ENVIRONMENTS

To correctly identify the location of a variable or an executable
statement, the Debugger maintains two distinct pointers, which are used
as defaults to certain commands. These pointers are:

Execution environment pointer

> Evaluation environment pointer

The term environment refers to a location that the Debugger recognizes
as the current environment. The pointers, therefore, help the Debugger
identify variables and program locations.

Execution Environment Pointer

The execution environment pointer gives the location at which execution
resumes when a CONTINUE or single-step command is given. The execution
environment is undefined — not known to the Debugger — at the
beginning of a Debugger session, before the first RESTART, or after
program execution is complete. The execution environment pointer has a
defined location only when execution has been suspended. The location

Second Edition

DOC4033-193

of this pointer may be changed with the GOTO command and determined
with the WHERE command. (See Chapter 5.) The execution environment
pointer corresponds to a statement, an entry to a program block, or
exit from a program block.

Evaluation Environment Pointer

The evaluation environment pointer gives the default program block to
be used for finding variables and statements and for examining source
files. This default program block is known as the evaluation
environment. The evaluation environment may be changed to a block
other than the default using the ENVIRONMENT command. (See Chapter 6.)

The default evaluation environment depends on how the Debugger is
entered:

• When the Debugger is initially entered, the location is set to
the program block corresponding to the main program.

• When the Debugger is reentered from the user program, as, for
example, from a breakpoint, the location is set to the program
block corresponding to the execution environment pointer.

• When the Debugger is reentered following user program
termination, the location is once again set to the program block
of the main program.

The evaluation environment pointer simplifies the use of the Debugger
by providing a default evaluation environment. Without it, each
reference to a variable or statement would require an accompanying
program block name to identify the block where it could be found.

LANGUAGE OF EVALUATION

The language that the Debugger uses at any given time to evaluate data
is called the language of evaluation. The language of evaluation tells
the Debugger which language syntax rules to use when expressions are
evaluated.

The default language used for evaluation is set to the source language
of the program block containing the evaluation environment pointer.
You can change the language of evaluation using the LANGUAGE command.
(See Chapter 6.)

Another term to describe the default language and all of its syntax
rules is host lanquaqe.

Second Edition

CONVENTIONS

ACTIVATIONS

An activation refers to a particular execution of a program block. An
activation number specifies a particular activation of a program block
when more than one activation can exist. Activation 2 refers to the
second execution of a program block, activation 3 refers to the third
execution, and so on. More than one activation of a program block can
exist if the block calls itself (recursion) or causes itself to be
called. More than one activation can also exist when you use the
Debugger's CALL command. (The CALL command is described in Chapter 7.)

You may specify activation numbers as absolute or relative.

Absolute Activation Number

An absolute activation number, which is an unsigned integer constant,
specifies the actual number of the activation — second, third, fourth,
etc. For example, you would use an absolute activation number to
examine a variable:

> : RECURSE\2\X

In the example shown above, you are evaluating the variable X in the
second activation of a program block called RECURSE. Note the use of
backslashes.

Relative Activation Number

A relative activation number specifies the number of activations to
count backwards from, beginning at the most recent activation of the
specified program block. This number is specified by a minus sign (-)
immediately followed by an integer constant.

Suppose your evaluation environment pointer were located at the fifth
activation of program block FACTORIAL and you wanted to set the
evaluation environment to activation 4 of FACTORIAL. You could do this
by giving the following command:

> ENVIRONMENT FACTORIAL\-l

Whenever the Debugger refers to an activation of a program
block, the Debugger displays the activation number only if
there is more than one activation of the block.

Second Edition

DOC4033-193

ACTIVE PROGRAM BLOCKS

Certain debugger operations that correspond to a particular program
block can occur only when that program block is active. An active
block means that the block must have been called, but not yet returned.

IDENTIFYING VARIABLES

The rules for identifying variables within the Debugger are identical
to the rules established by the host language. The syntax has been
expanded, however, so that you can reference any variable in the
debugging environment.

One of the three formats below is used to identify a variable.

^ variable-name

This format specifies a variable in the default program block described
by the current evaluation environment, variable-name is the variable
name, possibly qualified and/or subscripted according to the rules of
the host language. For example, to reference VARl in the current
block, specified by the evaluation environment pointer, enter:

VARl

^> program-block-name\variable-name

This format specifies a variable in a named program block,
program-block-name is the name of a program block and variable-name is
as defined above. This format is normally used to reference variables
in program blocks other than the current evaluation environment. If
there is more than one activation of this block, the most recent
activation is used. For example, to reference VARl in program block
SUBR1, enter:

SUBR1\VAR1

Second Edition

CONVENTIONS

^ program-block-^_ime\activation-number\variable-name

This format specifies a variable in a named program block and
activation, program-block-name and variable-name are as defined above.
activation-number is the activation number of the program block. For
example, to reference VARl in absolute activation 2 of subprogram
SUBR1, enter:

SUBR1\2\VAR1

IDENTIFYING STATEMENTS

Debugger commands such as BREAKPOINT and GOTO require the
identification of a statement within the debugging environment. In the
format descriptions below, the following terms are used:

• source-line is a source line number, the physical line number in
the source file. The SOURCE command displays the line numbers
for each statement in the source file.

statement-offset is the number of statements to count from the
first statement on a multistatement line. The first statement
on a line has a statement offset of 0, the second has an offset
of 1, and so on.

• insert-line is a physical line number in a $INSERT or % INCLUDE
fi l e .

• statement-label is a statement label number or label constant in
any of the seven supported languages. (Labels that begin with a
digit are preceded by a dollar sign ($) to distinguish a label
from a source line number.)

• line-offset is the number of physical source lines following the
line containing statement-label.

Any of the formats described below may be preceded by a backslash and
program block name:

program-block-name\statement- identifier

Absence of the program-block-name indicates that the current evaluation
environment pointer is used to find the given statement.

Second Edition

DOC4033-193

The following FORTRAN function is used as an example in the text below,
Debugger source line numbers have been added:

I; INTEGER*2 FUNCTION ABSADD (I, J)
2 : INTEGER*2 I , J
3: 10 ABSADD = I + J
4: 20 IF (ABSADD .LT. 0) ABSADD = -ABSADD
5 : R E T U R N
6 : E N D

Statement Identifier Formats

There are six possible ways of identifying a statement, three of which
use source file line numbers. The other three use statement labels.
The six formats follow:

(^ source-l ine

This format identifies the leftmost statement on the specified source
line number. For example, assume that ABSADD is the current evaluation
environment. The command:

BREAKPOINT 3

sets a breakpoint at:

ABSADD = I + J

on source line 3. If ABSADD were not the evaluation environment, it
would be necessary to use the program block name, ABSADD:

BREAKPOINT ABSADD\3

This format is one of the most common.

Second Edition

CONVENTIONS

As of this software release, you do not always have to specify
the program block name, as shown above. If you reference a
source line in the same file as the evaluation environment
pointer, the Debugger will derive the program block name and
give a message indicating what was assumed. This often happens
during Debugger operations involving Pascal and PL/I-G
programs, which contain so-called internal procedures and
functions that are declared in and compiled with the main
program.

▶ source-l ine+statement-offset

This format is useful when multiple statements appear on one line. It
specifies a statement that is not the leftmost statement on the source
line. For example, source line 4 has two statements: the IF statement
and the arithmetic assignment statement, which will be executed if the
IF expression is true. To set a breakpoint at the second statement
when the evaluation environment is not ABSADD, use:

BREAKPOINT ABSADD\4+1

There must be no space before or after the +.

To set a breakpoint at the second statement when the evaluation
environment is ABSADD, use:

BREAKPOINT 4+1

^ source- l ine (inser t - l ine)
source- l ine (insert- l ine+statement-offset)

This format is included for those who use executable statements in
$INSERT or % INCLUDE files. This is rare since the primary use of
$INSERT and %INCLUDE files is data declaration. In these cases, the
source line number is the line number in the primary source file, which
includes the $INSERT or %INCLUDE directive. The insert line number and
statement offset are used as described above. These were not included
in the example program because of their infrequent use.

Second Edition

DOC4033-193

For example, to set a breakpoint at the leftmost statement on physical
line number 2 in the file inserted on primary file line number 12 in
routine SUB:

BREAKPOINT SUB\12(2)

£▶ statement-label

This format identifies a statement by the label associated with it.
Labels can be used in all seven languages. References to FORTRAN,
Pascal, and COBOL 74 statement numbers must be immediately preceded by
a dollar sign to distinguish their numeric labels from source line
numbers. To set a breakpoint at FORTRAN statement label number 20 in
ABSADD, use:

BREAKPOINT ABSADD\$20

or, if the evaluation environment were set to ABSADD, just use

BREAKPOINT $20

This format is one of the most common.

Some characteristics of statement labels in each language are:

• A FORTRAN IV and FORTRAN 77 statement label is numeric and is
referenced with a preceding dollar sign to distinguish it from a
source line number.

A Pascal statement label is numeric, and it is declared in the
LABEL declaration part of the program. It is also referenced
with a preceding dollar sign.

A PL/I-G statement label is alphanumeric. The first character
in the label name must be an alphabetic character. It is not
referenced with a preceding dollar sign.

• A COBOL 74 statement label is a COBOL paraqraph name or section
name that is alphanumeric. It is referenced with a preceding
dollar sign only when the first character of the label is
numeric.

An RPG II statement label is an RPG tag that is alphanumeric.
Like PL/I-G, the first character in the label must be an
alphabetic character. It is not referenced with a preceding
dollar sign.

Second Edition

CONVENTIONS

A C statement label is also alphanumeric. The first character
in the label must be an alphabetic character. It is not
referenced with a preceding dollar sign.

^ s ta temen t - l abe l+ l i ne -o f f se t

This format identifies a statement by a statement label and line
offset. The statement referenced using this format is always the
leftmost statement on the line. The line-offset lines follow the
source line on which the specified label is defined. To set a
breakpoint at the RETURN statement on the source line 5 using this
format, enter:

BREAKPOINT $20+1

No backwards referencing is available. That is, you cannot set a
breakpoint at the statement on source line 3 by entering:

BREAKPOINT $20-1 (This is illegal.)

This format should not be confused with the second format described
above. The item preceding the plus sign in the second format is a
source line number, whereas the item here is a statement label.

▶ s ta tement- label+ l ine-offset+statement-offset

This is similar in function to the preceding format. However, it
allows you to identify a statement that is not the leftmost on the
source l ine specified by statement- label+ l ine-offset . To set a
breakpoint at the arithmetic assignment statement on source line 4
using this format, enter:

BREAKPOINT $10+1+1

The first +1 specifies the number of physical source lines beyond the
line on which FORTRAN statement label 10 is defined. This is the
source line on which the statement will be found. The second +1
specifies the second statement on that line. Remember this is an
offset, and the first statement is +0.

Table 4-1 lists all six statement identifier formats.

Second Edition

DOC4033-193

Table 4-1
Statement Identifier Formats

source-line

source-line+statement-offset

source-line (insert-line)
source-line (insert-line+statement-offset)

statement-label

statement-label+line-offset

statement-label+line-of f se t+statement-of f se t

SPECIAL CHARACTERS

Certain characters that you can enter at the terminal have special
meanings to the Debugger. These special characters either cause
special actions or are interpreted as part of special command syntax.
For instance, when you enter a double quotation mark ("), the Debugger
interprets it as the PRIMDS erase character and deletes the immediately
preceding character. When you enter a left bracket ([), the Debugger
interprets it as the beginning of a multiple command sequence called an
action list. (Chapter 5 discusses action lists.)

Table 4-2 lists all of the special characters and their meanings.

Caution

The PRIMDS erase and kill characters listed in Table 4-2 are
the system default (Prime-supplied) characters. You or your
System Administrator can change these characters. So find out
what your erase and kill characters are at your installation.

The Escape Character

The escape character affects the meaning of the character or characters
that immediately follow it. For instance, the escape character entered
before an erase, kill, or action list bracket character negates the
special meanings of these characters so that they are interpreted
l i t e r a l l y .

Second Edition

CONVENTIONS

Table 4-2
Special Characters

Character Meaning

Erase character Erases the previous character typed.
Assuming that your erase character is a
double-quote (the system default), the
command line:

> ENVIO"RONMENT $P"MAI "N

would be interpreted by the Debugger as:

> ENVIRONMENT $MAIN

Kill character
9

Causes the line typed thus far to be
Ignored. Assuming your kill character is
a question-mark (the system default), the
command line:

> BREAKPOINT 207TRACEPOINT 20

would be interpreted by the Debugger as:

> TRACEPOINT 20

Backslash
\

Used in breakpoints, variable definitions
and statement definitions to qualify a
program block name. For example:

Left bracket
[

> BREAKPOINT SUBRT

Begins an action list. For example:

> BREAKPOINT SUBR1\\ENTRY [ARGS]

Action lists are described in Chapter 5

Second Edition

DOC4033-193

Table 4-2 (continued)
Special Characters

Character Meaning

Right bracket Terminates an action list

Quote Begins a text string. The quote may be
single or double. Wi th in th is text
s t r i n g , t h e s p e c i a l m e a n i n g s o f
semicolon, left bracket, right bracket,
and the quote character, which didn't
begin the string (double quote if the
string is surrounded fcy single quotes,
and vice versa) are ignored. These
charac ters a re in te rpre ted l i te ra l l y.
This string must be terminated with a
matching quote. A quote character may be
included with a string by supplying two
quote characters. For example:

"This is a valid quoted '' string.'

'So's this."

'This string is invalid; quotes mismatch"

"This string is not terminated

Separator character Separates multiple commands on one line.
The Debugger default is a semicolon.

Escape Always affects the meaning of the
character or characters that immediately
fo l low i t . Table 4-3 descr ibes the
action taken by the Debugger for a number
of escape-character combinations.

Second Edition

CONVENTIONS

The escape character referred to in this book is not the ASCII
escape character, but rather a logical escape character, which
is the up-arrow or circumflex character (*).

The sequence of characters beginning with the escape character and
ending with the last character affected by the escape is known as the

Table 4-3 lists the ways that the escape character can affect the
meanings of certain characters.

Table 4-3
Effects of Using Escape Character

Character
Escape

Sequence E f f e c t

erase "Ml Enter erase character l i terally.

k i l l ~ 9• Enter kill character literally.

left bracket * [Enter left bracket literally.

right bracket A] Enter right bracket literally.

escape
/-. .». Enter escape character literally.

separator Enter a semicolon literally.

slash Enter a carriage return literally.

uppercase U
lowercase u

~u
~u

Conver t a l l o f the fo l low ing
lowercase characters to uppercase.

uppercase L
lowercase 1

~L
1

Conver t a l l o f the fo l low ing
uppercase characters to lowercase.

t h r e e - d i g i t
octal number

~nnn Enter the ASCII character that
this number represents.

quote Enter quote literally.

newline (carriage
return)

Continue input on next physical
line as part of the same input
l i n e .

Second Edition

DOC4033-193

Examples Using Escape Character: The following list gives examples
using the escape character:

• The special meanings of the left bracket and double quote (erase
character) are ignored with this command:

> SOURCE LOCATE "[MACRO ""STRING

Therefore, the text string to be located is '[MACRO "STRING'.

The following commands demonstrate how the escape, U, and L
characters are used to convert uppercase characters to lowercase
and vice versa. This command:

> : '"LTHIS BECOMES LOWERCASE, "uthis uppercase'

is interpreted by the Debugger as:

> : 'this becomes lowercase, THIS UPPERCASE'

Notice how the escape-slash character
literal carriage return:

sequence generates a

> : ST
ST = 'ABCDEPGHU'
> LET ST = 'ABCDE'/FGHU'
> : ST
31 = 'ABCDE

FGHI'

Here is an example of an escape character with a three-digit
octal number:

> : 'The "244 >1 is a dollar si<

This command is interpreted by the Debugger as:

> : 'The $ symbol is a dollar siqn'

Second Edition

CONVENTIONS

Here is an example of how the escape character followed by a
carriage return causes continuation of input on the next line
without ending a Debugger command:

> BREAKPOINT RESPOND\USERABORT [IF SUBSTR (INPUT, 1,5) ='
'ABORT' [WHERE] ELSE [CONTINUE]]

SPECIAL SYMBOLS

The Debugger recognizes six special symbols, including the erase, kill,
separator, and escape characters. The meanings of all six symbols are
listed below:

Meaninc

erase

kill •

escape

w i l d

blanks

Erases the immediately preceding character.

Ignores all characters typed so far on the line.

Used as general escape character.

separator Used as command separator.

Used as SOURCE command wildcard for FIND and LOCATE
operat ions.

Used as SOURCE command match for any number of blanks.

ipecial Symbols with PSYMBOL

The Debugger's PSYMBOL command displays a list containing the names of
special symbols and their current character values. The format of the
PSYMBOL command, abbreviated PSYM, is:

Here is an example of how it is used with the Debugger's default
symbols:

> PSYMBOL
E R A S E "
K I L L ?
ESCAPE
SEPARATOR
W I L D !
BLANKS

Second Edition

DOC4033-193

Changing a Symbol Character with SYMBOL

The Debugger's SYMBOL command changes the value of a special symbol
The format of the SYMBOL command, abbreviated SYM, is:

The symbol-name is the name of the character symbol — ERASE, KILL,
ESCAPE, SEPARATOR, WILD, or BLANKS. The character-value is the new
character value of the symbol. It may not be a space, alphanumeric, or
identical to an existing character symbol value.

Here are two examples of the SYMBOL command:

• To change the separator symbol to an ampersand (&), enter:

> SYMBOL SEPARATOR &

Command lines entered hereafter must use an ampersand
separate commands rather than a semicolon (the default).

To set the erase character to an at-sign (@), enter:

> SYMBOL ERASE 0

Second Edition

Breakpoints
and Program Control

Commands discussed in this chapter:

R E S TA R T A C T I O N L I S T
CONTINUE L IST
BREAKPOINT LISTALL
I F C L E A R IVIAIN

INTRODUCTION

In Chapter 3, you learned how to activate, suspend, and continue the
execution of your program with the RESTART, BREAKPOINT, and CONTINUE
commands. These capabilities are some of the Debugger's program
control features. Program control is defined as the manipulation of
the execution of your program.

This chapter discusses most of the Debugger's program control features,
inc lud ing:

• Activating program execution with the RESTART command.

• Continuing execution with the CONTINUE command.

• Suspending execution with the BREAKPOINT command and all its
powerful features. (The IF and ACTIONLIST commands are
discussed also.)

• Displaying and deleting breakpoints with the LIST, LISTALL,
CLEAR, and CLEARALL commands.

• Transferring program control with the GOTO command.

• Defining the main program with the MAIN command.

Second Edition

DOC4033-193

This chapter also discusses the WHERE command, which displays the
location of the execution environment pointer. Although WHERE is an
information request command, it is useful in program control
operations.

The remaining program control features are presented in
Chapters 7 and 8. Single-stepping and calling program blocks
are discussed in Chapter 7, and the UIsWIND command is discussed
in Chapter 8.

ACTIVATING PROGRAM EXECUTION

The RESTART command, which was introduced and demonstrated in Chapter
3, is used to activate and restart your program execution. (See also
Chapter 3.)

The format of the RESTART command, abbreviated RST, is:

If no step command is supplied with RESTART, execution continues until
control returns to Debugger command level via a breakpoint, completion
of execution, or some other circumstance.

The step-command is an optional Debugger single-stepping command. The
combined use of RESTART and a step command (STEP, STEPIN, IN, or OUT)
causes the program to restart execution, then suspend execution after a
specified number of statements has executed.

Single stepping, which is discussed completely in Chapter 7, allows you
to execute one or more statements at a time. It also can step across,
into, and out of called program blocks.

To restart program execution, enter:

> RESTART

To restart program execution and suspend execution immediately before
the first executable statement in your main program, enter:

> RESTART IN

For more examples of RESTART, see Chapters 3 and 7.

Second Edition

BREAKPOINTS

CONTINUING PROGRAM EXECUTION

The CONTINUE command, which was also introduced and demonstrated in
Chapter 3, continues program execution following a breakpoint, a
single-step operation, or an error condition. Program execution
resumes at the location specified by the execution environment pointer.
(See also Chapter 3.)

The format of the CONTINUE command, abbreviated C, is:

If the execution environment pointer is undefined — before program
execution starts or after program execution completes — then an
attempt to continue will fail.

If program execution has stopped at an error condition, you may or may
not be able to continue program execution. If not, enter a GOTO
command, which is described later in this chapter. Program execution
may be restarted with RESTART.

To continue program execution from the last breakpoint, enter:

> CONTINUE

Other examples of the CONTINUE command are given in Chapter 3.

SETTING BREAKPOINTS

As you recall from Chapter 3, you can suspend the execution of your
program using the BREAKPOINT command. (See also Chapter 3.)
BREAKPOINT is one of the most fundamental Debugger commands. You can
place a breakpoint on any executable statement — any statement that
performs some action. You can also place a breakpoint on an entry or
exit to a called program block. Breakpoints allow you to examine your
program's data strategically while execution is frozen. A breakpoint
also is known as a trap.

The format of the BREAKPOINT command, abbreviated BRK, is:

Second Edition

DOC4033-193

A breakpoint suspends execution immediately before the statement or
labelled statement specified by the breakpoint-identifier.

The breakpoint-identifier identifies the place where you want to
suspend program execution. For statement and label breakpoints, the
breakpoint identifier is a statement or label identifier, as defined in
Chapter 4. For program block entry and exit breakpoints, the
b reakpo in t i den t i fie r i s defined i n t he en t r y /ex i t b reakpo in t
discussion in the following section.

If the breakpoint identifier is omitted, the value of the execution
environment pointer is used.

As you can see from the BREAKPOINT command format, there are many other
powerful breakpoint features that were not presented in Chapter 3.
These features, which are described and demonstrated in the sections
that follow, are:

• Entry/exit breakpoints — setting a breakpoint at the entry to
or exit from a called program block.

• Action lists — executing one or more Debugger commands whenever
a breakpoint trap occurs. (ACTIONLIST command is discussed.)

• Conditional action lists — executing an action list contingent
upon the result of an expression using the IF command.

• Conditional breakpoints — taking or not taking a breakpoint
trap, depending on the conditions you specify. (-^FTER,
-BEFORE, and -EVERY options are used.)

• The breakpoint counter — keeping track of the number of times a
breakpoint has been encountered during program execution.
(-COUNT option is used.)

• Breakpoint ignore flag — suppressing a breakpoint so that the
breakpoint is never taken. (-IGNORE and -NIGNORE options are
used.)

The BREAKPOINT command's -EDIT option is used to edit and
modify an existing breakpoint using the Debugger's command line
editor. (See Chapter 10.)

Second Edition

BREAKPOINTS

5Z__________3__E
Besides an executable statement, a breakpoint can be set at the entry
to or exit from any program block. Entry/exit breakpointing is very
useful for examining your program's data while execution is frozen,
immediately before or after a program block is called.

An entry trap occurs inside the called program block, immediately
before the first executable statement. The exit trap occurs outside
the program block, after the block has returned.

An entry or exit is identified by one of the following three formats:

program-block-name\\preakpoint-type

• \£>reakpoint-type

• program-block-name\

The breakpoint-type can be either ENTRY (abbreviated EN) or EXIT
(abbreviated EX). The program-block-name is the name of the program
block at which you want to break.

Suppose you were using the first format and you wanted to break at the
entry of a program block named CONVERT. You would enter the following
command:

> BREAKPOINT CONVERT\\ENTRY

Similarly, if you wanted to break at the exit, you would enter:

> BREAKPOINT CONVERT'

The first format used when not in the same evaluation
environment as the program-block at which you want to break; that is,
it is used when you are debugging in another block.

Second Edition

DOC4033-193

If you want to break at the entry or exit of the current evaluation
environment block — the block in which you are debugging — use the
second format:

> BREAKPOINT \ENTRY
> BREAKPOINT n

The third format allows you to break at both the entry and exit of any
specified program block, in this case, CONVERT:

> BREAKPOINT CONVERT\

Consider the following PL/I-G program, which has two procedures — the
main program block, MULT, which multiplies two numbers, and internal
procedure SUBTR, which subtracts two numbers:

MULT : PROCEDURE;
DECLARE (P, Q, R) FIXED BIN (15) ;

P = 5;
Q = 10;
CALL SUBTR (P, Q);
R m p * Q;
PUT SKIP LIST('The product is', R) ;
PUT SKIP;

SUBTR : PROCEDURE (X, Y);
DECLARE (X, Y, Z) FIXED BIN(15);

Z = Y - X;
PUT SKIP LIST ('The remainder is', Z);
PUT SKIP;

END SUBTR;
END MULT;

Second Edition

BREAKPOINTS

The following example uses this program to demonstrate all three
entry/exit breakpoint formats:

> BREAKPOINT SUBTR\\ENTRY
> RESTART

**** breakpointed at entry to MULT.SUBTR
> BREAKPOINT \EX_T
> CONTINUE

The remainder is

**** breakpointed at exit from MULT.SUBTR
> BREAKPOINT MULT\
> RESTART

**** breakpointed at entry to MULT
> CONTINUE

**** breakpointed at entry to MULT.SUBTR
> CONTINUE

The remainder is

**** breakpointed at exit from MULT.SUBTR
> CONTINUE

The product is

**** breakpointed at exit from MULT
> CONTINUE

**** Program execution complete.
>

Figure 5-1 illustrates the exact positions where entry and exit
breakpoints are trapped. In this figure, which uses two sample blocks
named MAIN and TEST, notice how the entry trap occurs inside the called
program block, immediately before the first executable statement.. The
exit trap occurs outside the called program block, after the call
statement but before the next executable statement.

Second Edition

DOC4033-193

$MAIN

I T E S T . | |
first statement

CALL TEST
next statement

entry breakpoint trap

exit breakpoint trap

Positions of Entry and Exit Breakpoints
Figure 5-1

Action Lists

An action list allows you to execute one or more Debugger commands
whenever a breakpoint trap occurs.

An action list saves you the time and trouble of entering each command,
one at a time, after the breakpoint occurs.

To create an action list, enclose the list of Debugger commands in
paired square brackets [], and separate the commands with semicolons.
For example:

[: X; TYPE X; TYPE Y]

The action list is created with your breakpoint;

> BREAKPOINT 5 [: X; TYPE X; TYPE Y]

Second Edition

BREAKPOINTS

The command shown above suspends execution just before source line
number 5 of your program, then immediately executes the commands listed
within the square brackets. Execution remains suspended until another
command such as CONTINUE or RESTART is given.

To continue execution automatically after the action list has executed,
simply include a CONTINUE command as the last command in the action
l i s t :

> BREAKPOINT 5 [: X; TYPE X; TYPE Y; CONTINUE

The action list is a permanent part of the breakpoint unless it is
deleted or modified.

You can delete an action list by:

Reentering the breakpoint followed by an empty set of brackets:

> BREAKPOINT 5 []

• Deleting the entire breakpoint with the Debugger's CLEAR or
CLEARALL command, discussed later in this chapter.

You can modify an action list by:

• Reentering the breakpoint with the new desired action list.

• Using BREAKPOINT'S -EDIT option with the Debugger's command line
editor, which is discussed in Chapter 10.

Conditional Action Lists — the IF Command: The Debugger's IF command
executes an action list conditionally, contingent upon the result of an
expression.

The format of the IF command is:

The expression is any valid expression in the host language. It can be
either true or false. If the expression is true, the first action list
immediately following the expression is executed, and the ELSE clause,

Second Edition

DOC4033-193

if present, is ignored. If the expression is false, the first action
list is ignored, but the ELSE action list, if present, is executed.
For example:

> BREAKPOINT 8 [IF A > B [: A + B] ELSE [CONTINUE]]

Caution

When you tell the Debugger to evaluate an expression, the
Debugger only understands syntax written in the host language.
The expression A > B used above assumes a PL/I-G or Pascal
language of evaluation. If you were debugging a FORTRAN
program, the Debugger would not understand the > operator. You
would have to use a FORTRAN operator:

IF A.CT.B

In a COBOL 74 environment, you could enter:

IF A GREATER THAN B

For more information on the language of evaluation,
Chapters 4 and 6.

A conditional action list is also referred to as a nested action list,
because action lists contain other action lists. Here is an example of
an IF command clause within the action list of another IF command
clause:

> BREAKPOINT 8 [IF A <= B [IF B <= C [: C; CONTINUE"
ELSE [: B; CONTINUE]] ELSE [CONTINUE]]

The example shown above assumes a Pascal or PL/I-G language of
evaluat ion.

Note

You can use the IF command outside an action list, directly
after the Debugger's > command prompt. However, the IF command
is most often used for conditional action lists and macros.
(Chapter 9 discusses macros.)

Second Edition

BREAKPOINTS

Action List Examples: Consider the following Pascal program:

1: PROGRAM EveruOdd;
2: VAR
3: I : INTEGER;
4: BEGIN
5: FOR I := 1 TO 10 DO
6: IF I MOD 2=0 THEN
7: WRTTELN ('The number', 1:2, ' is even1)
8 : E L S E
9: WRTTELN ('The number', 1:2, » is odd')

10: END.

This program determines whether a number is odd or even. The output
looks "Hkp t-h-is?

OK, SEG EVENJDDD
The number 1 is odd
The number 2 is even
The number 3 is odd
The number 4 is even
The number 5 is odd
The number 6 is even
The number 7 is odd
The number 8 is even
The number 9 is odd
The number10 is even
OK,

Second Edition

DOC4033-193

In the following debugging session, a breakpoint that contains a
conditional action list is set. This action list evaluates the value
of the number only if it is even. The Pascal expression I MOD 2 yields
the remainder of a division operation, in this case, the remainder of I
divided by 2. Notice what happens to the output:

OK, DBG EVEN_ODD

Dbg revision 1.0 - 19.1 (30-November-1983)

> SOURCE PRINT 23
1: PROGRAM EvenjDdd;
2: VAR
3: I : INTEGER;
4: BEGIN
5: FOR I := 1 TO 10 DO
6: IF I MOD 2=0 THEN
7: WRTTELN ('The number', 1:2, ' is even')
8 : E L S E
9: WRTTELN ('The number', 1:2, ' is odd');

10: END.
BOTTOM
> BREAKPOINT 6 [IF I MOD 2 = 0 [: I; CONTINUE] ELSE [CONTINUE]]
> RESTART
The number 1 is odd
1 = 2
The number 2 is even
The number 3 is odd
1 = 4
The number 4 is even
The number 5 is odd
1 = 6
The number 6 is even
The number 7 is odd
1 = 8
The number 8 is even
The number 9 is odd
I = 10
The numberlO is even

**** Program execution complete.
>

Second Edition

BREAKPOINTS

In the next example, the same breakpoint action list is modified so
that two conditions — specified by nested IF commands — are met.
This action list evaluates the number only if it is even and if it is
greater than 6:

> BREAKPOINT 6 [IF I MDD 2 = 0 [IF I >= 6 [: I; CONTINUE] ELSE'
[CONTINUE]] ELSE [CONTINUE]]
> RESTART
The number 1 is odd
The number 2 is even
The number 3 is odd
The number 4 is even
The number 5 is odd
1 = 6
The number 6 is even
The number 7 is odd
1 = 8
The number 8 is even
The number 9 is odd
I = 10
The number10 is even

**** program execution complete.
>

Displaying Action Lists with ACTIONLIST Command: The Debugger's
ACTIONLIST command, abbreviated AL, can display the commands of an
action list prior to their execution. The format of the ACTIONLLST
command is:

Normally, no action lists are displayed prior to their execution. The
PRINT option specifies all action list commands to be displayed. The
SUPPRESS option deactivates the PRINT option, causing no action list
commands to be displayed once again.

When an action list is displayed on your terminal, a number enclosed in
angle brackets < > is printed at the left margin immediately preceding
the action list. This number is the action list depth counter, which
specifies the nesting level of the action list. This counter is
incremented by 1 for each pending action list in which one or more
commands remain to be executed. It is decremented following the
execution of the last command in the action list.

If you specify the PRINT option, the commands contained within all
action lists and macro command lists are displayed immediately before
they are executed. (Chapter 9 describes macros.)

Second Edition

DOC4033-193

Here is an example of the ACTIONLIST PRINT command:

> BREAKPOINT 9 [: X; TYPE Y]
> ACTIONLIST PRINT
> RESTART

**** breakpointed at TEST\9:

<1> : X; TYT_ Y
X = 5
integer parameter
>

If you specify the SUPPRESS option, no information is displayed when an
action list or macro is executed:

> ACTIONLIST SUPPRESS

Conditional Breakpoints

In the previous section, you learned that a certain condition can cause
an action list to execute or not execute. A breakpoint itself can also
be conditional. That is, a breakpoint trap can be taken or not taken
during the execution of your program, depending on the condition you
spec i fy.

Three BREAKPOINT command options (-AFTER, -BEFORE, and -EVERY) can be
used to trap breakpoints conditionally. These options work in
conjunction with the breakpoint counter, which keeps track of the
number of times the breakpoint has been encountered. This counter is
set to 0 when the breakpoint is created and incremented by one each
time the breakpoint trap is taken.

When the -AFTER, -BEFORE, or -EVERY option is specified on a BREAKPOINT
command line, the option is followed by a number that is compared to
the value of the counter every time the breakpoint is encountered.

-AFTER Option: The -AFTER option causes the breakpoint trap to occur
only when the value of the counter exceeds the value of the number
following -AFTER.

-BEFORE Option: The -BEFORE option causes the breakpoint trap to occur
len the value of the counter is less than the value following

-BEFORE.

Second Edition

BREAKPOINTS

-EVERY Option: The -EVERY option causes the breakpoint trap to occur
every n iterations through the breakpoint location, where n is the
value following -EVERY.

The following example demonstrates the -AFTER and -BEFORE options with
the EVENjDDD Pascal program:

> SOURCE PRINT 23
Is PROGRAM EvenjOdd;
2s VAR
3s I s INTEGER;
4s BEGIN
5: FOR I := 1 TO 10 DO
6: IF I MDD 2 = 0 THEN
7: WRTTELN ('The number1, 1:2,
8: ELSE
9: WRTTELN ("The number', 1 :2 ,

10: END.
BOTTOM
> BREAKPOINT 6 -AFTER 3 -BEFORE 5
> RESTART
The number 1 is odd
The number 2 is even

is even

is odd')

The number 3 is odd

**** breakpointed at EVEN_ODD\6
> CONTINUE
The number 4 is even
The number 5 is odd
The number 6 is even
The number 7 is odd
The number 8 is even
The number 9 is odd
The number10 is even

**** Program execution complete,

Second Edition

DOC4033-193

Here is an example of the -EVERY option used with the same program;

> BREAKPOINT 6 -EVERY 3
> RESTART
The number 1 is odd
The number 2 is even

**** breakpointed at EVEN_0DD\6
> CONTINUE
The number 3 is odd
The number 4 is even
The number 5 is odd

**** breakpointed at EVEN_0DD\6
> CONTINUE
The number 6 is even
The number 7 is odd
The number 8 is even

**** breakpointed at EVEN_0DD\6
> CONTINUE
The number 9 is odd
The number10 is even

**** Program execution complete,
>

The Breakpoint Counter

The breakpoint counter, as pointed out in the previous section, keeps
track of the number of times that a breakpoint has been encountered.
This counter, which is known to the Debugger, but is often invisible to
the user, is set to 0 when the breakpoint is created and incremented by
1 each time the breakpointed location is encountered.

The breakpoint counter is visible to the user when you use the
LIST and LISTALL commands, which is discussed later in this
chapter, or when you reference the Debugger-defined variable,
$C0UNT, which is discussed in Chapter 6.

Second Edition

BREAKPOINTS

The BREAKPOINT command's -COUNT option can be used to reset the
breakpoint counter. It is set to the value that you specify after the
option. Here is an example that uses the -COUNT option:

> BREAKPOINT 6 -BEFORE 3
> RESTART

**** breakpointed at EVEN_0DD\6
> CONTINUE
The number 1 is odd

**** breakpointed at EVEN_0DD\6
> CONTINUE
The number 2 is even
The number 3 is odd
The number 4 is even
The number 5 is odd
The number 6 is even
The number 7 is odd
The number 8 is even
The number 9 is odd
The number10 is even

**** Program execution complete,
> BREAKPOINT 6 -COUNT 0
> RESTART

**** breakpointed at EVEN_ODD\6
> CONTINUE
The number 1 is odd

**** breakpointed at EVEN_ODD\6
> CONTINUE
The number 2 is even
The number 3 is odd
The number 4 is even
The number 5 is odd
The number 6 is even
The number 7 is odd
The number 8 is even
The number 9 is odd
The numberlO is even

**** Program execution complete,
>

Second Edition

DOC4033-193

Breakpoint Ignore Fla-

While debugging, you may want to suppress the breakpoints so that the
breakpoint trap is never taken. The breakpoint ignore flag, specified
by the BREAKPOINT command's -IGNORE option, causes a breakpoint never
to be taken. Whenever an ignored breakpoint is encountered, only the
counter is incremented; your program execution continues.

Ignoring a breakpoint is useful for suppressing a trap while retaining
all its information, especially action lists, for future use. It is
also useful for obtaining a count of the number of times the breakpoint
is encountered. The -NIGNORE option deactivates the ignore flag so
that the breakpoint trap is taken again.

Here is an example that uses an ignore flag:

> BREAKPOINT 6 -IGNORE
> RESTART
The number 1 is odd
The number 2 is even
The number 3 is odd
The number 4 is even
The number 5 is odd
The number 6 is even
The number 7 is odd
The number 8 is even
The number 9 is odd
The numberlO is even

**** Program execution complete
> BREAKPOINT 6 -NIGNDRE
> RESTART

**** breakpointed at EVEN_0DD\6
>

DISPLAYING YOUR BREAKPOINTS

During your debugging sessions, you may want to display the locations,
counts, and action lists of your breakpoints. The Debugger's LIST and
LISTALL commands display breakpoint attributes for you. (The LIST and
LISTALL commands also display your tracepoint attributes. See also
Chapter 8.)

Second Edition

BREAKPOINTS

The LIST Command

The LIST command displays the attributes of one breakpoint. The format
of the LIST command is:

Used without the breakpoint-identif ier, LIST displays the attributes
for the breakpoint at the location specified by the execution
environment pointer:

> LIST
Type Location
brk $$MAIN$$\4, count = 1

[IF A >= 3 [: B] ELSE [CONTINUE]]

The breakpoint-identifier can be any valid breakpoint identifier, such
as a simple source line number in the current evaluation environment:

> LIST 7
Type Location
brk $$MAIN$$\7, count = 0

To display a breakpoint on source line number 18 in program block TEST,
en te r :

> LIST TESTYL8

To list the attributes of the entry and exit breakpoints to program
block TEST, enter:

> LIST TEST\
Type Location
brk entry to $$MAIN$$.TEST, count
brk exit from $$MAIN$$, count = 2

Second Edition

DOC4033-193

The LISTALL Command

The LISTALL command lists the attributes of all the breakpoints you
have set. The format of the LISTALL command, abbreviated LSTA, is:

B tjlfej ̂ ^Hl_K«n>I«T€?MB #ji f*T<H.%=?M5£§ |^^|pS|tl
1 -isra^fAKPOINTS 1

CEPOINTS

The program-block-name is the name of the program block that contains
the breakpoints you want to see.

If no arguments are specified, the Debugger displays a list of all
breakpoint and tracepoint attributes that you have set:

> LISTALL
Type Location
brk entry to $MAIN, count = 1
brk $MAIN\120+1, count = 0

[IF I.GT.1000 [: Y] ELSE [CONTINUE]]
brk $MAIN\134, count = 0, after 2
brk ADDITM\12, count = 1

If you specify the -BREAKPOINTS option, only the breakpoints
tracepoints — are listed:

> LISTALL -BREAKPOINTS

program block, enter the block name:
s p e c i fi c

> LISTALL TEST

If you want to list just the breakpoints in a specific program block,
enter the block name followed by the -BREAKPOINTS option:

> LISTALL TEST -BREAKPOINTS
Breakpoints at:

entry to TEST, count = 0
TEST\7, count = 0
TEST\9, count = 0

Second Edition

BREAKPOINTS

The -DESCEND option displays all breakpoints and tracepoints for a
specified program block and for all the nested program blocks or
"descendants" contained in the specified block. A program block name
must be specified with the -DESCEND option. For example:

> LISTALL TEST -DESCEND
Type Location
brk TEST.TEST_TWO\20, count = 0
brk TEST.TEST_THREE\25, count = 0
brk TEST.TEST_FOUR\39, count = 0
> LISTALL -DESCEND
-DSC is allowed only when a procedure name is specified.

If you are using the -DESCEND option and want to list only breakpoints,
specify both the -DESCEND and -BREAKPOINTS options:

> LISTALL TEST -DESCEND -BREAKPOINTS

The -TRACEPOINTS option functions like the -BREAKPOINTS option, except
that it lists tracepoints. (See also Chapter 8.)

DELETING YOUR BREAKPOINTS

The Debugger's CLEAR and CLEARALL commands delete breakpoints,
commands can also delete tracepoints. See also Chapter 8.)

(These

The CLEAR Command

The CLEAR command deletes a breakpoint,
command, abbreviated CLR, is:

The format of the CLEAR

The breakpoint-identifier must be any valid breakpoint identifier, such
as a simple source line number, as defined for the BREAKPOINT command.

If you omit the breakpoint identifier, the breakpoint located at the
current execution environment pointer is deleted.

To delete a breakpoint on source line number 13 in the current
evaluation environment, enter:

> CLEAR 13

Second Edition

DOC4033-193

To delete a breakpoint on source line number 22 in program block TEST,
enter :

> CLEAR TEST\22

To delete a breakpoint at the exit of program block TEST, enter;

> CLEAR TEST\\EXIT

To delete the breakpoints at the entry and exit to program block TEST,
en te r :

> CLEAR TEST\

The CLEARALL Command

The CLEARALL command deletes either all breakpoints in the debugging
environment or all breakpoints in a specific program block. The format
of the CLEARALL command, abbreviated CLRA, is:

The program-block-name is the name of the program block containing the
breakpoints that you want to delete.

If no arguments are specified, all breakpoints and tracepoints are
deleted:

> CLEARALL

To delete all breakpoints and no tracepoints, enter:

> CLEARALL -BREAKPOINTS

To delete all breakpoints only in a given program block TEST, enter:

> CLEARALL TEST -BREAKPOINTS

Second Edition

BREAKPOINTS

The -DESCEND option functions the same as it does with the LISTALL
command. -DESCEND deletes all breakpoints and tracepoints in a
specified program block and in all the nested program blocks or
"descendants" contained in the specified block. A program block name
must be specified with the -DESCEND option:

> CLEARALL TEST -DESCEND

If you are using the -DESCEND option and want to delete
breakpoints, specify both the -DESCEND and -BREAKPOINTS options:

> CLEARALL TEST -DESCEND -BREAKPOINTS

The -TRACEPOINTS option functions like the -BREAKPOINTS option, except
that it deletes tracepoints. (See also Chapter 8.)

FINDING THE EXECUTION ENVIRONMENT POINTER

Often during your debugging sessions you may want to verify the
location of the execution environment pointer — the position at which
execution is to resume. The WHERE command displays the location of the
execution environment pointer. The format of the WHERE command,
abbreviated WH, is:

Entered by itself, WHERE displays the current location of the execution
environment pointer.

This command can also find the program location that corresponds to a
given segment and halfword memory address. The segment-number is a
segment number represented in octal. The address is a halfword address
represented in octal. If a segment and address are specified, the
Debugger attempts to identify that address in terms of program location
(program block name and statement identifier). If successful, this
program location is displayed. Otherwise a diagnostic (unidentifiable
address) is displayed.

Here is how the WHERE command is used to print the current location of
the execution environment pointer:

> WHERE
Currently at TEST\25

Second Edition

DOC4033-193

Here is how the WHERE command is used to identify the program location
that corresponds to address 4001/1412:

> WHERE 4001/1412
?MAIN\102

TRANSFERRING PROGRAM CONTROL

With the Debugger's GOTO command, you can change the execution
environment pointer to indicate another statement in your program.
When you issue this command, the place where execution is suspended
changes to the statement you have specified. A CONTINUE command
following a GOTO command would, therefore, resume program execution at
the statement you have specified with GOTO.

The format of the GOTO command is:

The GOTO command may only be used to transfer control to a statement in
an active program block, which means that the block must have been
called, but not returned.

The statement-identifier can be a statement source line number,
statement label, or any other valid identifier as defined in Chapter 4.

If an activation-number is specified — usually for recursive
blocks — then control is transferred to the specified statement in
that activation. If no activation number is specified, the most recent
activation of the program block is assumed.

After a GOTO, the evaluation environment pointer is set to the new
program block. If the specified program block is written in another
language, then the language of evaluation is set to the new language.

Second Edition

BREAKPOINTS

Consider the following COBOL 74 program named CALLER:

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER.

DATA DIVISION.

6: WORKING-STORAGE SECTION.
7: 01 Al.
8: 02 A2 PIC XX VALUE 'A2*.
9: 02 A3 PIC XX VALUE 'A3 '.

10: 02 A4.
11: 03 A5 PIC XX VALUE 'A5'.
12: 03 A6 COMP PIC S9(4) VALUE 0
13: 02 A7 PIC XX VALUE *A7'.
14:
15: PROCEDURE DIVISION.
16: 001-BEGIN.
17: PERFORM 002-CALL UNTIL A2 = 'B2».
18: DISPLAY 'END OF RUN' .
19: EXHIBIT A6.
20: STOP RUN.
21:
22: 002-CALL.
23: CALL 'CALLED' USING Al.

The program CALLER calls the following program block named CALLED:

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLED.

DATA DIVISION.

6: LINKAGE SECTION.
7: 01 ARG1.
8: 0 2 B 2 P I C X X .
9: 0 2 B 3 P I C X X .

10: 02 B4.
11: 0 3 B 5 P I C X X .
12: 0 3 B 6 C O M P P I C S 9 (4)
13: 0 2 B 7 P I C X X .
14:
15: PROCEDURE DIVISION USING ARG1.
16: DISPLAY 'ENTERING CALLED'.
17: MOVE 'B2' TO B2.
18: MOVE *B3' TO B3.
19: MOVE 'B5' TO B5.
20: ADD 9999 TO B6.
21: MOVE 'B7' TO B7.
22: GQBACK.

Second Edition

DOC4033-193

The example that follows uses the GOTO command to skip over the
statement in CALLED that causes the program to end (line 17) . Thus,
the program keeps looping back to line 16, increasing the initial value
of A6 from 9999 to 29997. Notice the use of the WHERE command in this
example:

> BREAKPOINT CALLED\16
> RESTART

**** breakpointed at CALLED\16
> WHERE
Currently at CALLED\16.
> GOTO 18
> WHERE
Currently at CALLED\18.
> CONTINUE

**** breakpointed at CALLED\16
> GOTO 18
> CONTINUE

**** breakpointed at CALLED\16
> CONTINUE
ENTERING CALLED
END OF RUN
A6 = 29997

EXIT. Program exit from CALLER\20 ($001-BEGIN+4).
>

Figure 5-2 illustrates the GOTO command using one sample program block
named MAIN.

DEFINING THE MAIN PROGRAM

Usually, the Debugger recognizes the program block that you have
intended to be your main program •
when you enter a RESTART command,
the Debugger to recognize some
program, use the MAIN command to
program block should be.

— the block that the Debugger calls
However, if for some reason you want
other program block as your main

tell the Debugger what your main

The format of the MAIN command is:

Second Edition

BREAKPOINTS

> BREAKPOINT 10
> RESTART ,

$MAIN

5: statement

**** breakpointed at $MAIN\10
> GOTO 5

Transferring Control with the GOTO Command
Figure 5-2

The program-block-name is the name of the program block that you want
the Debugger to call when a RESTART command is given. For example, to
set the main program to block TEST, enter:

> MAIN TEST

If you want to find out the main program that the Debugger currently
recognizes, enter the MAIN command by itself:

> MAIN
Main program is TEST

The program block that the Debugger recognizes as the main
program by default is the first program block that you have
loaded.

Second Edition

Data Manipulation

,ommanas aiscuss

TYPE
LET
ARGUMENTS

ENVIRONME
ENVLIST
LANGUAGE

INTRODUCTION

In nearly all your debugging sessions, it becomes necessary to examine
your program's variables and expressions while execution is frozen.
Data manipulation is vital for determining why your program failed.

Chapter 3 introduced three data manipulation commands (:, TYPE, and
LET). This chapter explains more about these three commands and
describes these other features:

• Displaying the values of arguments passed to a program block
with the ARGUMENTS command.

• Changing the evaluation environment with the ENVIRONMENT
command.

• Changing the language of evaluation with the LANGUAGE command.

• Referencing Debugger-defined variables.

• Referencing external variables with $EXTERNAL.

Second Edition

DOC4033-193

THE EVALUATION COMMAND

The Debugger command that examines or evaluates a simple variable or
more complex expression is a colon (:). (See also Chapter 3.) The
format of the evaluation command is:

guage-name[,print-mode] expres

The language-name specifies the language of evaluation, which tells the
Debugger what language syntax rules to use when it evaluates an
expression. If you specify no language name, then the expression is
evaluated according to the syntax rules of the host language — the
language used for the program block corresponding to the current
evaluation environment. You may specify one of the following language
names. Abbreviations are underlined:

• _pi_T3AN

• PL1G

• PASCAL

• _P_P_
• VRPG

• _:

The language you give in the : command line overrides the language of
the current block or the language set by the LANGUAGE command for the
duration of the : command only.

You can change the language of evaluation explicitly with the
Debugger's LANGUAGE command, explained later in this chapter.

The print-mode specifies the format in which the result is printed.
You may specify one of the following print modes. Abbreviations are
underl ined:

• ASCII

• BIT

• DECIMAL

Second Edition

DATA MANIPULATION

FLOAT

OCTAL

If you specify no print mode, the default print mode, which corresponds
to the declared type of the variable or the resultant type of the
expression, is used. The print mode you give in the : command line
overrides the print mode of the given expression for the duration of
the command.

The PMODE command explicitly sets the print mode for a variable
so that the print mode will be used whenever that variable is
evaluated. The PMODE command is fully explained in Chapter 13.

If you specify the language name and/or print mode, they must
immediately follow the colon. There must be no space between the colon
and language name or print mode. If both language name and print mode
are supplied, a comma must separate them. The expression must be
preceded by a space. For example:

> :PASCAL, OCTAL X

Evaluating Variables

You may evaluate any variable according to the rules of the host
language. Where applicable, you may evaluate:

• Simple variables

Arrays

• Array elements

• Array cross sections

» Structures (records)

• Structure members (fields)

» Pointer-referenced data

Second Edition

DOC4033-193

Here are some examples of variable evaluation:

> : KEYS
KEYS = 14577

> :PL1G, BET KEYS
KEYS = 0011100011110001 (b)

> : OCTAL SUBRXADDRESS
ADDRESS = 64017 120270 (o)

> :FORTRAN ITEMNO
TTEMNO = 1374

The lowercase (b) and (o) stand for BIT and OCTAL respectively.

As you recall from Chapter 4, to reference a variable in a different
program block, you must give the name of the block as well as the
variable. The block must also be active. For example, to evaluate the
variable X in block TEST you would enter:

> : TESTN

Similarly, if you want to reference a variable in a particular
activation of a program block, enter the activation number as well.
For example:

> : TEST\3\X

In the example shown above, the variable X is being evaluated in the
third activation of program block TEST.

Array References: You can reference a portion of an array by
specifying a star extent or a "bound pair", which designates the range
of a given dimension using a special Debugger notation (...).

A star extent works as follows. Substituting a star (*) for a
subscript indicates that the full range of that dimension will be
displayed or operated upon. For example, to reference the
one-dimensional array formed by the elements (1, 2), (2, 2), and (3, 2)
of the 3-by-3 array TICTACTOE, enter:

> : TICTACTOE (*, 2)
TICTACTOE (1) - 'X'
TICTACTOE (2) - 'X1
TICTACTOE (3) = '0'
>

Second Edition

DATA MANIPULATION

Here is an example using a COBOL 74 record structure that contains a
two-dimensional array:

> : BUDGETED-AMT (*, 1)
THEDEPT(1).BUDGETED-AMT = 3002.00
THEDEPT(2).BUDGETED-AMT = 0.00
THEDEPT (3).BUDGETED-AMT = 0.00
THEDEPT(4).BUDGETED-AMT = 0.00
THEDEPT (5).BUDGETED-AMT = 0.00
THEDEPT (6).BUDGETED-AMT = 0.00
THEDEPT(7).BUDGETED-AMT = 0.00
THEDEPT (8).BUDGETED-AMT = 0.00
>

You can also limit the range of a dimension by specifying a bound pair
of the form:

lower-bound ... upper-bound

lower-bound and upper-bound are any valid expressions that reduce to
integer values. For example, given a three-dimensional array,
CALENDAR, declared as "CALENDAR (12, 31, 1950:2000) CHARACTER (10)
VARYING", you may enter the following:

> : CALENDAR (DECEMBER, 25, 1979...1985)
CALENDAR(1979) = 'Tuesday'
CALENDAR(1980) = 'Thursday'
CALENDAR(1981) = 'Friday'
CALENDAR(1982) = 'Saturday'
CALENDAR(1983) = 'Sunday'
CALENDAR (1984) = 'Tuesday'
CALENDAR(1985) = 'Wednesday'
>

Note that the resultant type of an array cross section is an array
whose number of dimensions is equal to the number of subscripts with
either a star or a bound pair. The range of such a dimension is the
declared range if the subscript is a star, or the specified range if
the subscript is a bound pair. From the example above, therefore, you
can enter:

> TYPE CALENDAR (DECEMBER, 25, 1979...1985)
character(10) varying automatic 1 dimensional array: (1979:1985)

Second Edition

DOC4033-193

Here is another example of range used with a COBOL 74 record structure:

> : THEDEPT (7...8)
THEDEPT(7).THEREST(1).BUDGETED-AMT =0.00
THEDEPT(7) .THEREST(1) .AMT-SIENT = 0.00
THEDEPT(7).THEREST(2).BUDGETED-AMT = 0.00
THEDEPT(7) .THEREST(2) .AMT-SIENT = 0.00
THEDEPT(7).THEREST (3).BUDGETED-AMT = 0.00
THEDEPT(7) .THEREST(3) .AMT-SPENT = 0.00
THEDEPT(7).THEREST(4).BUDGETED-AMT = 0.00
THEDEPT(7) .THEREST(4) .AMT-SPENT = 0.00
THEDEPT(7).THEREST(5).BUDGETED-AMT = 0.00
THEDEPT(7) .THEREST(5) .AMT-SPENT = 0.00
THEDEPT(7).THEREST(6).BUDGETED-AMT = 0.00
THEDEPT(7) .THEREST(6) .AMT-SIENT = 0.00
THEDEPT(7).THEREST(7).BUDGETED-AMT =0.00
THEDEPT(7) .THEREST(7) .AMT-SIENT = 0.00
THEDEPT(7) .THEREST(8) .BUDGETED-AMT = 0.00
THEDEPT (7) .THEREST(8) .AMT-SPENT = 0.00
THEDEPT (7).THEREST(9).BUDGETED-AMT = 0.00
THEDEPT(7) .THEREST(9) .AMT-SIENT = 0.00
THEDEPT (7).THEREST(10).BUDGETED-AMT = 0.00
THEDEPT(7) .THEREST(10) .AMT-SIENT = 0.00
THEDEPT(8) .THEREST(1) .BUDGETED-AMT = 0.00
THEDEPT(8) .THEREST(1) .AMT-SIENT = 0.00
THEDEPT (8).THEREST(2).BUDGETED-AMT = 0.00
THEDEPT (8) .THEREST(2) .AMT-SIENT = 0.00
THEDEPT(8) .THEREST(3) .BUDGETED-AMT = 0.00
THEDEPT (8) .THEREST (3) .AMT-SPENT = 0.00
THEDEPT (8).THEREST(4).BUDGETED-AMT = 0.00
THEDEPT (8) .THEREST(4) .AMT-SPENT = 0.00
THEDEPT (8) .THEREST (5) .BUDGETED-AMT = 0.00
THEDEPT (8).THEREST (5).AMT-SIENT = 0.00
THEDEPT (8).THEREST(6).BUDGETED-AMT = 0.00
THEDEPT(8) .THEREST(6) .AMT-SIENT = 0.00
THEDEPT(8) .THEREST(7) .BUDGETED-AMT = 0.00
THEDEPT(8) .THEREST(7) .AMT-SPENT = 0.00
THEDEPT (8).THEREST (8).BUDGETED-AMT = 0.00
THEDEPT (8) .THEREST (8) .AMT-SIENT = 0.00
THEDEPT (8) .THEREST (9) .BUDGETED-AMT = 0.00
THEDEPT (8) .THEREST (9) .AMT-SIENT = 0.00
THEDEPT(8) .THEREST(10) .BUDGETED-AMT = 0.00
THEDEPT (8) .THEREST(IO) .AMT-SIENT = 0.00
>

Second Edition

DATA MANIPULATION

The Debugger can also compare arrays
following two PL/I-G arrays:

and structures. Consider the

COUNTS(1)
COUNTS (2)
COUNTS(3)
COUNTS (4)
COUNTS (5)

LIMITS (1)
LIMITS (2)
LIMITS (3)
LIMITS (4)
LIMITS (5)

You can compare these arrays with the following Debugger command:

> : COUNTS <= LIMITS
(1) = 'l'b
(2) = 'l'b
(3) = '0'b
(4) = 'l'b
(5) = 'l'b

The first 'l'b means that COUNTS(1) is less
LIMITS (1) — that 6 is less than 10 — and so on.

than equal

Similarly, you can compare the array COUNTS this way:

> : COUNTS
(1) = »l'b
(2) = '0'b
(3) = 'l'b
(4) = »0'b
(5) = '0'b

Using Pascal character arrays, you have to compare an entire array to
see if the condition is either TRUE or FALSE for every element in the
array. For example, consider these two Pascal character arrayss

ARRAYJONE HI = 'h' ARRAYJTWO 11] - 'o'
ARRAY_GNE f2] = 'e' ARRAYJTWO [2] - '1'
ARRAY_QNE [31 = '1' ARRAYJTWO [3] = '1'
ARRAY ONE f4] _ »l« ARRAYJTWO [4] = 'e'
ARRAYJONE [51 = 'o' ARRAYJTWO [51 = 'h'

Second Edition

DOC4033-193

Watch what happens when these arrays are compared:

> s ARRAYJONE = ARRAY TWO
fa lse
> s ARRAYJONE <> ARRAY TWO
true
> s ARRAYJONE [31 = ARRAY TWO [3'
t rue
>

Suppose you were debugging a Pascal program containing one character
array declared as ARRAY OF CHAR, and one character string declared as
type STRING, which is a Prime extension data type similar to the
CHARACTER VARYING type in PL/I-G. In the following example, notice the
differences in the ways the array and string are evaluateds

> BREAKPOINT 15
> RESTART

**** breakpointed at PREZ\15
> s BEST PRESIDENT
BEST_PRESIDENT [1] - 'N'
BEST_PRESIDENT [2] = 'i'
BEST_PRESIDENT [3] = 'x'
BESTJPRESIDENT [4] = 'o'
BEST_PRESIDENT [5] = 'n'
> TYPE BEST_PRES IDENT
char static 1 dimensional arrays [1..5]
> s CURRENT PRES IDENT
CURRENT_PRES IDENT = 'Reagan'
> TYPE OJRRENTPRESIDENT
str ing[9] s tat ic
>

In the example shown above, the variables are fields in a Pascal record
structure. Notice that you do not need to specify the record name when
using the evaluation or TYPE command. The field name suffices.

Second Edition

DATA MANIPULATION

Evaluating Expressions

The Debugger can evaluate any expression permitted fcy the source
language. This includes the ability to evaluate expressions usings

PL/I-G built-in functions and replaced symbols

Pascal standard functions and CONSTANTS

FORTRAN intrinsic functions and PARAMETERS

One C function, SIZEOF

Table 6-1 lists the available PL/I-O, Pascal, FORTRAN, and C functions.

Here are some examples of how these functions would be used to evaluate
data s

> s SQRT(X)

> s CHR(X+Y)

> LET X = SUCC(X)

Note

These functions are defined in the invisible $DBG block, and
they are always known to the Debugger. (For more information
on the $DBG block, see Chapter 4.)

Here are some more examples of expression evaluations

> s BALANCE - (CHECKTOTAL + SVCCHARGE) + DEPOSITS
597.98

> : A .GT. 5
.TRUE.

> : LOC (GAMMA)
4002(0)/32

> : 'Hello' 1 I ' there'
'Hello there'

> : COLOR
COLOR = BLUE

Second Edition

DOC4033-193

Table 6-1
PL/I-G, Pascal, FORTRAN, and C Supported Functions

ABS COMPLEX EXP MAX1 QTANH
ACOS CONJG FAULT MIN QUAD
ADD COPY FIXED MINO RANK
ADDR COS FLOAT MINI REAL
ADDREL OOSD FLOOR MDD REL
AFTER COSH HBOUND MULTIPLY REVERSE
AIMAG CSIN HIGH NINT RING
AINT CSQRT TABS NOT RND
ALOG DABS ICHAR NULL ROUND
ALOG10 DACOS IDIM ODD RS
AMAXO DAS IN IDINT OFFSET RT
AMAX1 DATAN IDNINT ONCODE SEARCH
AMINO DATAN2 IFIX OR SEGNO
AMIN1 DATE IMAG ORD SHFT
AMOD DBLE INDEX POINTER SIGN
AND DBLEQ INSERT PRED SIN
ANINT DCMPLX INT PTR SIND
ARCTAN DCOS INTL QABS SINH
AS IN DCOSH INTS QACOS SIZEOF
ATAN DDIM IQINT QASIN SNGL
ATAN2 DEC IQNINT QATAN SQR
ATAND DECAT IRND QATAN2 SQRT
ATANH DECIMAL ISIGN QCOS STACKBASE
BASEPTR DELETE LBOUND QCOSH STACKPTR
BASEREL DEXP I£N QDIM STR
BEFORE DIM LENGTH QEXP STRING
BIN DIMENSION LGE QEXT SUBSTR
BINARY DINT LGT QEXTD SUBTRACT
BIT DIVIDE LINKPTR QINT SUCC
BOCL DLOG LLE QLOG TAN
BYTE DLOG10 LLT QLOG10 TAND
CABS DMAX1 LN QMAX1 TANH
COOS DMIN1 LOC QMIN1 TIME
CEIL DMOD LOG QMIN1 TRANSLATE
CEXP DNINT LOG10 QMOD TRIM
CHAR DPROD LOG2 QNINT TRUNC
CHARACTER DSIGN LOW QPROD UNSIEC
CHR DSIN LS QSIGN UNSTR
CLOG DSINH LT QS IN VERIFY
CMPLX DSQRT LTRIM QSINH XDR
CMPX DTAN MAX QSQRT
COLIATE DTANH MAXO QTAN

These functions may be used to evaluate expressions in any
language, including COBOL 74 and RPG. However, the data type
of the expression — or your host language's equivalent of the
data type — must be the type that the function expects.

Second Edition

DATA MANIPULATION

Evaluatinq Pointer Data

PL/I-G, Pascal, and C pointer variables and expressions can also be
evaluated. Not only can you evaluate the pointer (the address) but you
can also evaluate the value being pointed to (the value located at the
address). For example, consider the following piece of Pascal code:

3: TYPE
4: POINTER = "ELEMENT;
5: ELEMENT = RECORD
6: VALUE : INTEGER;
7: NEXT : POINTER
8: END;
9: VAR

10: NEWVALUE, HEAD, TAIL : POINTER;
11: BEGIN
12: RESET (INPUT, 'INPUT');
13: NEW(NEWALUE);
14: READ(INPUT, NEWVALUE".VALUE);
15: NEWVALUE".NEXT := NIL;
16: HEAD := NEWVALUE;
17: TAIL := NEWVALUE;

Based on the Pascal code shown above, you can use the evaluation
command as shown in the following example:

**** breakpointed at LINK\17
> : NEWVALUE".VALUE
VALUE = 7
> : NEWVALUE
NEWVALUE = 4027(3)/14
> : NEWVALUE"
NEWALUTT. VALUE = 7
NEWVALUE".NEXT = 7777(0)/0
> : HEAD"
HEAD" .VALUE = 7
HEAD".NEXT = 7777(0)/0
>

In the example shown above, notice the difference between the address
and the value contained at that address.

Note

When evaluating Pascal pointer expressions, you must enter two
consecutive escape characters (") to negate the escape
character's special meaning. (For your convenience, only one
escape character is shown in these examples.)

Second Edition

DOC4033-193

In the next example, the TYPE and LET commands, which you learned in
Chapter 3, are used with the pointer type data:

> TYPE NEWVALUE".VALUE
integer based
> TYPE NEWVALUE
pointer static
> TYPE NEWVALUE
record based
> LET NEWVALUE".VALUE = 9
> : NEWVALUE"VALUE
VALUE = 9
> LET HEAD".NEXT = NEWVALUE
> : HEAD .NEXT
tEXT = 4027 (3)/14
>

The TYPE and LET commands are fully discussed in the following
sect ions.

THE TYPE COMMAND

You can determine the data type and other attributes of a variable or
expression by using the TYPE command. When the TYPE command is given,
the Debugger evaluates the expression that follows, then prints the
data type and other attributes of the resultant expression. (See also
Chapter 3.)

The following information is printed, if applicable:

• Data type

• Precis ion

• Scale factor

• Storage class

• Array dimensions and bounds

• Values of enumeration constants

• Base type

• End points of subrange

The format of the TYPE command is:

Second Edition

DATA MANIPULATION

The expression is any expression permitted by the host language,

Here are some examples using the TYPE command:

> TYPE BUFFER
integer*2 common /BUFFER/

> TYPE TOTAL * 5
rea l *4

> TYPE TAXFNC
entry constant external (real*4 function)

> TYPE TITLE
character(25) varying automatic

> TYPE LINK
pointer automatic 1 dimensional array: (1:50)

> TYPE COLOR
enumerated static

0: RED
1: BLUE
2: GREEN

> TYPE NS
subrange static (THIRD..SIXTH)

THE LET COMMAND

The LET command allows you to assign a new value to any variable
defined by the program. (See also Chapter 3.)

The format of the LET command is:

The variable user variable name, as defined in Chapter 4, and
expression is any expression permitted fcy the host language whose
resultant value is convertible to the data type of the variable.

When the LET command is given, the expression on the right side of the
assignment statement is evaluated, and the resulting value is assigned
to the variable. Type conversions allowed by the host language are
performed by the Debugger before the assignment takes place. An error
message is displayed if the conversion requested is illegal.

Second Edition

DOC4033-193

Here are some examples using the LET command:

> LET MAXENTRIES = 1000

> LET INDEX = FIRST + FREELIST (I)

> LET FLAG = .FALSE.

The Debugger supports assignment to structures and arrays. To assign
each element of the one-dimensional array, LIST, to the corresponding
element of the array cross-section referenced by TABLE (10, *), enter:

> LET TABLE (10, *) = LIST

To set each element of TABLE to zero, enter:

> LET TABLE = 0

To assign each member of the PL/I-G based structure STATUS to the
corresponding member of the structure CUT<RENTSTATUS, enter:

> LET CURRENTSTATUS = LOCATOR -> STATUS

THE ARGUMENTS COMMAND

You can display the values of all arguments supplied to a given program
block using the ARGUMENTS command. Seeing the values of arguments that
are passed to called program blocks and how those values change is a
handy tool to have in your debugging expeditions.

The format of the ARGUMENTS command, abbreviated ARGS, is:

Given by itself, the ARGUMENTS command displays the values of the
arguments passed to the program block defined by the evaluation
environment pointer — the current program block.

When a program-block-name is given, the arguments passed to that block
are displayed.

Second Edition

DATA MANIPULATION

You can designate an activation-number to display the arguments passed
to a particular activation of a program block, if more than one
activation exists. If the activation number is omitted, the most
recent activation is assumed. The activation of the program block must
be active. (Activation is defined in Chapter 4.)

You can display the arguments to all called program blocks during entry
tracing by specifying the ETRACE command with its ARGS option. (See
Chapter 8.)

To display the arguments to program block SEARCH, enter:

> ARGUMENTS SEARCH
GRCUP = 12
NAME = 'TAYLOR'
RTN_INDEX = 0

To obtain the arguments of the current program block, enter:

> ARGUMENTS
INTRAT = 0.8E-01
BALNC = 315.79

Consider the COBOL 74 programs, CALLER and CALLED, which were shown in
Chapter 5. The following debugging example illustrates the ARGUMENTS
command used on those COBOL 74 programs:

> BREAKPOINT CALLED\18
> RESTART
ENTERING CALLED

**** breakpointed at CALLED\18
> ARGUMENTS
ARG1.B2 = 'B2'
ARG1.B3 = ' '
ARG1.B4.B5 = ' '
ARG1.B4.B6 = 0
ARG1.B7 = * '
>

Second Edition

DOC4033-193

CHANGING THE EVALUATION ENVIRONMENT

You can change the evaluation environment with the ENVIRONMENT command.
The evaluation environment is the program block that the Debugger
considers current and uses to identify statements and evaluate
variables and expressions. Changing the evaluation environment in
effect changes the evaluation environment pointer. (The evaluation
environment pointer is defined in Chapter 4.)

Changing the evaluation environment is useful for evaluating data in a
program block that is outside your current environment. If the block
to which you set your evaluation environment is not active, you cannot
evaluate automatic variables and expressions. Other types may be
evaluated.

The ENVIRONMENT Command

The format of the ENVIRONMENT command, abbreviated ENV, is:

The program-block-name is the name of the program block that you want
as the new evaluation environment. The activation-number is «
particular activation of program-block-name. If no activation is
specified, the most recent activation is assumed. (Activation is
defined in Chapter 4.)

The -POP option, which is used to remove an environment from the
evaluation environment stack, is described later in this section.

To display the value of the current evaluation environment, enter the
ENVIRONMENT command by itself:

> ENVIRONMENT
Current evaluation environment is TEST.
>

If the block corresponding to the current evaluation environment is not
active, the Debugger tells you so.

To set the evaluation environment to the block CONVERT, enter:

> ENVIRONMENT CONVERT

Second Edition

DATA MANIPULATION

The ENVIRONMENT command is very useful for debugging recursive
programs. You can change the evaluation environment to any particular
activation of a recursive block. Then you can evaluate data in that
activation. For example:

> ENVIRONMENT
Current evaluation environment is FR0G.JUMP\3.
> : LEAP
LEAP = 3
> ENVIRONMENT JUMP\1
> ENVIRONMENT
Current evaluation environment is FR0G.JUMP\1.
> : LEAP
LEAP - 1
>

In the example shown above, the variable LEAP is evaluated in
activations 3 and 1 of the Pascal procedure JUMP, contained in the main
program FROG.

The ENVIRONMENT command is very useful for evaluating a lot of data in
any given block — recursive or otherwise — because you only have to
issue the name of the block once. For example:

> ENVIRONMENT JUMP\1
> : LEAP
LEAP = 1
> TYPE LEAP
integer automatic

Without the ENVIRONMENT command, you would have to issue the same
commands this way:

> : JUMP\1\LEAP
LEAP = 1
> TYPE JUMP\1\LEAP
integer automatic

In other words, you would have to enter the name of the block, and if
necessary, the activation number. This causes extra keystrokes and is
time consuming, especially if you have a lot of data to examine.

Second Edition

DOC4033-193

Changing the evaluation environment is also useful if you have to set a
lot of breakpoints in a block outside the current evaluation
environment. This saves you the trouble of entering the program block
name for each breakpoint. For example:

> BREAKPOINT 7
No such statement.
> ENVIRONMENT TEST
> BREAKPOINT 7
> BREAKPOINT 6
>

When you use the ENVIRONMENT command to set the evaluation environment
to a block that is written in another language, the language of
evaluation is automatically set to the language of the new block. The
Debugger even tells you what the new language is. For example, if you
set the evaluation environment to a FORTRAN subroutine named GETR, the
Debugger gives you this response:

> ENVIRONMENT GETR
New language is Fortran.

The Evaluation Environment Stack: Each time you change the evaluation
environment, the previous environment is pushed onto an internal stack
known as the evaluation environment stack. This stack can contain up
to 10 most recent environments that you have set with ENVIRONMENT. It
can provide you with a way of returning to a previous environment
without reentering the name of the program block and activation.

Figure 6-1 illustrates how evaluation environments are pushed onto the
evaluation environment stack in a four-step sequence.

Caution

The evaluation environment stack is destroyed whenever you
restart or continue program execution or issue a GOTO, CALL, or
single-step command.

Second Edition

DATA MANIRJLATION

> ENVIRCNMENT
Environment is P.

> ENVIRONMENT Q
>

current
evaluation
environment

evaluation
environment
stack is empty

current
evaluation
environment

evaluation
environment
stack

> ENVIRCNMENT Y
>

> ENVIRCNMENT Z
>

current
evaluation
environment

current
evaluation
environment

£111

Pushing Environments onto Evaluation Environment Stack
Figure 6-1

6-19 Second Edition

DOC4033-193

You can remove or "pop" an environment off of the evaluation
environment stack with the ENVIRCNMENT command's -POP option. When you
enter the -POP option, the evaluation environment at the top of the
stack is removed and becomes the current evaluation environment. For
example, to set the evaluation environment to the program block named
SORT at the top of the stack, enter:

> ENVIRCNMENT -POP
Environment is SORT.

Figure 6-2 illustrates how evaluation environments are
stack in a four-step sequence with the -POP option.

d off the

Displaying the Stack with ENVLIST

The ENVLIST command displays the current evaluation environment and the
contents of the evaluation environment stack. (The evaluation
environment stack is described in the previous section.)

The format of the ENVLIST command, abbreviated EL, is:

Here is an example of the ENVLIST command:

> ENVLIST
Current evaluation environment is PLCHLLINE,
The evaluation environment stack contains:

PLOT_VECT0R\2
PLOT_VECT0R\1
PLOTJSETUP

CHANGING THE LANGUAGE OF EVALUATION

As you learned in Chapter 1, the Debugger is multilingual. This means
the Debugger can communicate and evaluate expressions in any of the
seven supported languages. The Debugger can switch from one language
to another when you debug a program that contains several program
blocks written in several languages.

The language that the Debugger uses at any given time to evaluate data
is called the language of evaluation. The language of evaluation tells
the Debugger which language syntax rules to use when expressions are
evaluated.

Second Edition

DATA MANIPULATION

> ENVIRONMENT
Environment is Z

> ENVIRCNMENT -POP
Environment is Y.

current
evaluation
environment

current
evaluation
environment

environment Z
is destroyed

> ENVIRCNMENT -POP
Environment is Q.

> ENVIRCNMENT -POP
Environment is P.

current
evaluation
environment

c u r r e n t *
evaluation \
environment \

environment Y
is destroyed

environment Q
is destroyed

empty

Popping Environments off the Evaluation Environment Stack
Figure 6-2

Second Edition

DOC4033-193

The default language used for evaluation is set to the source language
of the program block containing the evaluation environment pointer.
You can change the language of evaluation to evaluate expressions in
any desired language with the LANGUAGE command.

The format of the LANGUAGE command, abbreviated LANG, is:

Used without an argument, the LANGUAGE command displays the name of the
current host language. For example:

> LANGUAGE
Language is RPG.

If you want to change the current language to another language, enter
the name of the desired language:

> LANGUAGE FORTRAN

With the command shown above, you can evaluate expressions using
FORTRAN syntax.

execution of your program when a RESTART or CONTINUE command is
given.

Second Edition

DATA MANIPULATION

The following example uses the LANGUAGE command to change the language
of evaluation from FORTRAN to COBOL. Notice how the Debugger reacts to
the evaluation syntax in each language:

> LANGUAGE
Language is FORTRAN.
> IF ARG1 LESS THAN 0 [: ARGl]
Unrecognized name - "LESS"
ARGl LESS THAN 0

> LANGUAGE COBOL
> IF ARGl LESS THAN 0 [: ARGl]
ARGl = -1
>

In the example shown above, the Debugger does not recognize the
operator LESS THAN in FORTRAN, but does in COBOL.

Here is another example that evaluates a Boolean (true/false) value in
Pascal and PL/I-G:

> LANGUAGE
Language is PASCAL.
> __A
A = false
> LET A = 'l'B
Unable to convert character value to Boolean,
A = 'l'B

>
>

LANGUAGE PL1G
: A

A = '0'b
>
>

LET A = • l ' B
: A

A = 'l'b
> LANGUAGE PASCAL
> : A
A = true
>

The LANGUAGE command is useful if you are debugging a program that
contains a lot of program blocks written in other languages. You may
not be familiar with the syntax rules of those languages and may want
to evaluate data using the syntax of the language you are most familiar
with. In this way, the LANGUAGE command makes it easier to talk to the
Debugger in your native tongue. This command is also very useful if
you want to take advantage of a particular language's powerful
operators and expression evaluation syntax.

Second Edition

DOC4033-193

REFERENCING DEBUGGER-DEFINED VARIABLES

In Chapter 4, you learned about the invisible $DBG outer block. The
$DBG block contains three Debuqqer-def ined variables — variables that
are created by and always known to the Debugger. These variables are:

• $MR

• $COUNT

• $COUNTERS

You can reference the values of these variables during your debugging
sessions to provide you with special information.

The $DBG block, which defines these three variables, also
defines and knows about all of the PL/I-G, Pascal, and FORTRAN
built-in functions that were listed earlier in this chapter.
(For more information on the $DBG block, see Chapter 4.)

The $MR Variable

The $MR variable yields the values of the machine registers. Table 6-2
lists the special information that is contained within the variable
$MR.

Table 6-2
Machine Registers

Register
Category Descr ipt ion

SAVE-MASK Bit string indicating which registers have been
saved

V V-mode registers (A, B, L, X, Y, E)

I I-mode registers (general registers 0 through 7)

BR Base registers (PB, SB, IB, XB)

KEYS Process keys

Second Edition

DATA MANIPULATION

Each time the Debugger is reentered from the user program, the values
of the machine registers are saved and stored in $MR.

For example, to display the current saved machine state, enter:

> : $MR
$MR.SAVE__MASK = '111111111111'b
$MR.V.A = 3
$MR.V.B = 0
$MR.V.L = 196608
$MR.V.X = 17975
$MR.V.Y = 17424
$MR.V.E = 14
$MR.I.GR0 = 1679948336
$MR.I.GR1 = 0
$MR.I.GR2 = 196608
$MR.I.GR3 = 14
$MR.I.GR4 = 14
$MR.I.GR5 = 1141922692
$MR.I.GR6 = 0
$MR.I.GR7 = 1394231
$MR.BR.PB = 4001(3)/1046
$MR.BR.SB = 4037(3)120244
$MR.BR.IB = 4002(0)/177404
$MR.BR.XB = 4037(3)6734
$MR.BR.KEYS = '0001100000000000 'b

The $C0UNT Variable

The value of the breakpoint counter for the most recent breakpoint or
tracepoint is stored in the Debugger-defined variable $COUNT. This
variable is most useful in IF expressions in conditional breakpoint
action lists. (The breakpoint counter and action lists are defined in
Chapter 5.)

Here is an example using $C0UNT in a nested breakpoint action list:

> BREAKPOINT A\24 [IF $C0UNT > 6 [GOTO 26] ELSE [CONTINUE]]

The SCOUNTERS Variable

The variable $COUNTERS contains counts made during Debugger
initialization relating to program size and symbols. These counts are
valid only if the -FULI_IN_T option is specified on the DBG command
line. (See Chapter 13 for information on DBG command line options.)
Table 6-3 lists the meanings for the individual counts.

Second Edition

DOC4033-193

Table 6-3
Meanings of Counts Specified by $COUNTERS

Count Meaning

STATEMENTS

OUTEI_FiLOCKS

T0TAL_r3L0CKS

TOP_£EVEL_SYMBOLS

Number of statements in procedures
compiled in debug mode

Number of external program blocks
compiled in debug and production modes

Number of external and internal
program blocks compiled in debug and
production modes

Number of declared symbols, not
including structure members

NQN_T0P_T_SVTJLJ3YMBQ_S Total number of structure members

IERMANENT_STORAGE Number of words allocated by the
Debugger for the user program's symbol
table

DATA_FILE_SIZE Size in words of the Debugger data
file contained in the program's SEG
fi l e

The following example displays the values contained in $COUNTERS:

> : $COUNTERS
$COUNTERS. STATEMENTS = 42
$COUNTERS.OUTEI_.BLOCKS = 1
$C0UNrERS.TOTAL_BLOCKS = 2
$COUNTERS.(BJECT_GROUPS = 81
$COUNrERS.DISK_READS = 2
$C0UNIERS.TOP_LEVEI_j3YMB<XS = 15
$C0UNIERS.N0N_TOP_I£VT_̂ _3YMBQLS = 10
$COUNI_]RS.ALLOCATE_CALLS = 96
$COUNTERS.IERMANENT_SrORAGE = 1303
$C0UNTERS.DATA_FILE_3IZE = 1370

The CBJECT_GROUPS, DISK-READS, and ALLOCATE_CALLS counts are
provided for the user, and they should, therefore, be ignored.

Second Edition

DATA MANIPULATION

REFERENCING EXTERNAL VARIABLES

The Debugger provides an alternative for referencing PL/I-G and Pascal
external variables, that is, variables declared to be global to
external program blocks. The format of this alternative reference is:

$EXTERNAL\variable

The variable is a PL/I-G variable declared as STATIC EXTERNAL or a
Pascal external variable declared with surrounding {$E+} and {$E-}
compiler switches.

Here is an example:

> : $EXTERNAL\TIMEDATE.DATE
DATE.DAY = '20'
DATE.MONTH = '08'
DATE.YEAR = '79'

Variables must be qualified at the top level when used with $EXTERNAL.
This means that $EXTERNAL/DATE would not work. You must enter
TIMEDATE.DATE.

You can produce the same result by specifying the program block that
corresponds to the variable or else change the evaluation environment
with the ENVIRCNMENT command before referencing the variable.

Second Edition

Single Stepping
and Galling

Program Blocks
lands discussed in this chapter*

OUT
CALL

TNTRQDUCTION

This chapter describes the following special program control features:

• Single stepping — executing one or more statements at a time
and stepping across, into, or out of a called program block with
the STEP, STEPIN, IN, and OUT commands.

• Calling a program block from Debugger command level with the
CALL command.

SINGLE STEPPING

Single stepping allows you to execute a program one or more statements
at a time. It also can step across, into, and out of called blocks.

The four single stepping commands, which are described in the following
sections, are:

• STEP — executes a given number of statements at a time and
steps across a program block.

• STEPIN — also executes a given number of statements but steps
into a program block.

Second Edition

DOC4033-193

IN — continues execution until the next program block is
c a l l e d .

CUT — continues execution until the current program block
returns.

The STEP Command

The STEP command executes one or more statements at a time. STEP
suspends program execution after a given number of statements in the
current program block without referencing statement numbers or labels.
STEP requires only the number of statements or "steps" to execute
before execution suspends. BREAKPOINT would require a statement
identifier and a CONTINUE command to do the same thing.

The format of the STEP command, abbreviated S, is:

The value is the number
suspending execution,
executed by default.

statements you want to execute before
10 value is specified, one statement is

Consider the following FORTRAN IV program, which has one subroutine
named WRTTEN:

1: CALL WRTTEN (3)
2: CALL WRTTEN (4)
3: CALL WRTTEN (5)
4: CALL EXIT
5: END
6:
7: SUBROUTINE WRTTEN (N)
8: WRITE (1, 10) N
9: 10 FORMAT ('ARGUMENT IS ',

10: RETURN
111 END

You can restart program execution with RESTART and suspend execution
prior to the first executable statement by entering a STEP command on
the same line:

> RESTART STEP

**** "step" completion at $MAIN\1
>

Second Edition

STEPPING AND CALLING

The step completion message indicates that the next statement to be
executed is on source line number 1 in the main program.

If you have just entered the Debugger from PRIMDS command level, you
can accomplish the same thing by entering just the STEP command without
RESTART:

> STEP

**** "step" completion at $MAIN\1
>

To execute the first statement in the program, stepping across the
called block, enter:

> STEP
ARGUMENT IS

**** "step" completion at $MAIN\2
>

The ARGUMENT IS 3 message was displayed by subroutine WRTTEN, which was
called from the main program. The STEP command, therefore, neither
prevents nor interrupts the execution of a called program block;
execu t i on con t i nues un t i l t he b lock re tu rns t o t he ca l l i ng
program — in this case, main program. Execution is then suspended
again at the next executable statement, which is line 2 in $MAIN.
Hence, the term across simply means that when a call statement is
encountered, the entire called program block is executed without
interruption until the called block returns.

Here is an example of a STEP command that uses the argument 2; that
is, two statements are executed at a time instead of one:

> RESTART STEP 2
ARGUMENT IS 3

**** "step" completion at $MATN\2
> STEP 2
ARGUMENT IS 4
ARGUMENT IS 5

**** "step" completion at $MAIN\4

Second Edition

DOC4033-193

There are some minor differences in the interpretation of value,
depending on where the STEP or STEPIN command is given:

• If the execution environment pointer represents a statement,
that is, if execution is suspended at a statement, the value is
the number of statements that will be executed.

If the execution environment pointer represents an entry to a
program block, the value 1 means execution suspends prior to the
first statement, the value 2 means the first statement is
executed and suspension occurs prior to the second statement,
and so on.

If the execution environment pointer represents an exit from a
program block, a value of 1 signifies that the remainder of the
statement (if any) that caused entry to the just-returned
program block is to be executed and that execution is to suspend
prior to the next statement. A value of 2 indicates that, in
addition to the above, the next statement is to be executed, and
so on.

If the execution environment pointer represents the Debugger
default on-unit for a particular condition, a value of 1
indicates that the on-unit is to return and that execution is to
suspend prior to the next statement. A value of 2 indicates
that the on-unit is to return and the next statement is to be
executed, and so on.

If the execution environment pointer is undefined,
STEP or a RESTART STEPIN command is implied.

RESTART

Figure 7-1 illustrates the STEP command. In this figure, the word STEP
indicates that execution has suspended at a step completion. Each
white box represents one executable statement. Notice that execution
does not stop within the called block.

The Step Counter: Invisible to the user is the step counter. This
counter, which is internal to the Debugger, contains the number of
statements left to be executed before execution is suspended again and
control returns to Debugger command level. This number is the value
that you specify whenever you use a STEP or STEPIN command. If you do
not specify a value, the counter is set to 1 by default. When you
enter a STEP or STEPIN command, the counter is decremented by 1 until
the counter reaches 0. When the count becomes 0, execution is
suspended again and control returns to Debugger command level.

Second Edition

STEPPING AND CALLING

The STEP Command
(Each white box represents one executable statement)

Figure 7-1

The STEPIN Command

STEPIN works like the STEP command, except that when STEPIN encounters
a call statement, STEPIN steps into the called block and continues
single stepping — suspending execution at statements within the called
b lock.

STEPIN executes and single steps every statement, whether or not the
statement is contained within the current block or the called block.

The format of the STEPIN command, abbreviated SI, is:

The value is the number of statements you want to execute before
suspending execution. If no value is specified, one statement is
executed by default.

Second Edition

DOC4033-193

Here is an example of the STEPIN command used with the sample FORTRAN
program shown in the previous section:

> STEP

**** "step" completion at $MAIN\1
> STEPIN

**** "in" completion at WRTTEN\8
>

In the example shown above, notice the "in" completion message that
appears at the statement at source line number 8 within the subroutine
WRTTEN.

Assuming the execution environment pointer was at line number 1 again,
to step into WRTTEN and suspend execution at the RETURN statement on
line 10, enter:

> STEP

**** "step" completion at $MATN\1
> STEPIN 3
ARGUMENT IS

**** n:nnin" completion at WRTTEN\10 ($10+1)

The three statements that are executed with this command are on source
line numbers 1, 8, and 9.

If the program block specified by the execution environment
pointer at the time the STEP or STEPIN command is given
returns, single stepping is terminated and control returns to
Debugger command level.

Figure 7-2 illustrates the STEPIN command. In this figure, the word
STEP or STEPIN indicates that execution has been suspended. Each white
box represents one executable statement.

Second Edition

STEPPING AND CALLING

The STEPIN Command
(Each white box represents one executable statement)

Figure 7-2

The IN Command

The IN command continues program execution until the next program block
is called, then suspends execution at the entry to that block,
immediately before the first executable statement.

IN is similar to an entry breakpoint, except that you specify a
particular block for an entry breakpoint. IN simply suspends execution
at the next program block that is called, whatever it happens to be.
(For information on entry breakpoints, see Chapter 5.)

If you enter an IN command when execution is suspended inside a program
block that returns before another program block is called or before
program execution ends, then execution will suspend at the exit of the
current program block, immediately before the next executable
statement. The effect is similar to an exit breakpoint. (See Chapter
5.)

If you enter an IN command when no more blocks are to be called or
returned, execution continues until it is suspended for some other
reason or until program execution completes.

Second Edition

DOC4033-193

If the execution environment is undefined, a RESTART IN command
sequence is implied, that is, an IN command will produce the same
result as RESTART IN.

The format of the IN command is:

Assuming you have just entered the Debugger from PRIMDS command level,
you can suspend execution at the entry of your main program fcy simply
issuing the IN command:

**** "in" completion at entry to $MAIN
>

In the following example, which uses the FORTRAN program shown earlier,
execution continues until the first call to the subroutine WRTTEN:

**** «in" completion at entry to $MAIN
> IN

* * * * " i n "in" completion at entry to WRTTEN

Figure 7-3 illustrates the IN command.

Second Edition

STEPPING AND CALLING

$ M A I N '
**** "in" completion at entry to $MAIN

> IN

CALL TEST

The IN Command
Figure 7-3

The OUT Command

The OUT command continues program execution until the current program
block, defined fcy the execution environment pointer, returns and
execution suspends at the exit of that block.

OUT is similar to an exit breakpoint, except that you specify a
particular block for the exit breakpoint. OUT simply suspends
execution at the exit of the current block, whatever it happens to be.

The format of the OUT command is:

Second Edition

DOC4033-193

Assume you are suspended at the entry to WRTTEN in the sample FORTRAN
program used earlier. To continue program execution until the block
returns, enter:

**** breakpointed at entry to WRTTEN
> OUT
ARGUMENT IS :

* * * * " « n 4 - nout" completion at exit from WRTTEN into $MAIN\2

Figure 7-4 illustrates the OUT command.

CALLING PROGRAM BLOCKS

With the Debugger's CALL command, you can call a program block from
Debugger command level. A program block could be, for example, a
FORTRAN function, Pascal procedure, OOBCL program, or RPG subroutine.
(Program blocks are defined in Chapter 4.)

The CALL command is useful when you are having problems with a certain
program block and want to call that block again or "replay" it to
discover those problems. When you replay your block, you can pass
correct or incorrect arguments to it, suspend execution within it,
evaluate an expression in it, trace a value through it, or use other
Debugger features while you study the output. CALL moves the
evaluation environment pointer to the block that you call.

CALL is useful because it can test a single subroutine before the rest
of the program is finished. CALL can also call utility routines, which
might help during debugging — for example, displaying an English
interpretation of some internal data structure.

The format of the CALL command is:

The variable is the name of the program block you want to call, as
described in Chapter 4.

The argument-list is a list of expressions or "parameters" that are
supplied or "passed" to the program block according to the rules of the
host language.

Second Edition

STEPPING AND CALLING

$MAIN

CALL TEST
**** "out" completion at exit from TEST

> -

The CUT Command
Figure 7-4

When the CALL command is given, the Debugger evaluates the value of
each argument, then calls the block, supplying the resulting values as
arguments. For example:

> CALL STRSORT (LIST, KEY1 + 2)

If the user block is a function, the Debugger displays the returned
value on the terminal:

> CALL GETIDX
Returned value: 11

Second Edition

DOC4033-193

If you want to call a block that is not declared within the block
corresponding to the evaluation environment pointer, you must specify
the desired block name. For example, suppose you wanted to call a
block named MULT, which was not defined in the current evaluation
environment. You would enter:

> CALL MULT\p
The product is

If you had not entered the MULT\, you would have received an error
message:

> CALL MULT
No applicable declaration found for MULT
MULT

If you had not supplied the correct number of arguments to the block,
you would have received an error message:

_____■_#]
Too few arguments to "MULT": 2 expected, 1 supplied.
MULT^lULT (5)

An alternative to specifying the same block name (MULT) is specifying
the name of the next outer block in which MULT is declared. For
example, if MULT were declared within another block named CALC, you
could enter:

> CALL CALCNMJLT (2, 5)
The product is

If execution is suspended with the called block, the Debugger displays
a special command prompt, which has the following format:

(call-level:block-name) >

Second Edition

STEPPING AND CALLING

The call-level indicates the level of invocation of the Debugger,
block-name is the name of the called user block. For example:

> BREAKPOINT INSERT\47
> BREAKPOINT RELINK\\ENTRY
> CALL INSERT NEWTTEM

**** breakpointed at INSERT\47
(1: INSERT) > CALL RELINK (PTR)

**** breakpointed at entry to INSERT.RELINK
(2:RELINK) >

In effect, this prompt is telling you that you are suspended within a
program block that has been executed with the CALL command.

CALL and the Call/Return Stack

Each CALL command causes a new invocation of the Debugger. Other calls
not related to Debugger CALL invocations include user block calls, such
as your main program's call to another block, and calls to PRIMOS
error-handling conditions when the Debugger encounters serious runtime
errors. Each call and invocation is placed on a stack known as the
cal l /return stack.

The call/return stack, therefore, is a list of currently active program
blocks. Each call or invocation that is put on the stack is known as a
call/return stack frame. A frame that is created by a CALL command
invocation is known as a Debugger CALL frame.

Looking at the call/return stack is useful because it lets you see how
program control passed around during the execution of your program.
The Debugger's TRACEBACK command can display the contents of the
call/return stack. The UNVIND command erases all frames from the
call/return stack. (For complete information on the call/return stack
and the TRACEBACK and UNWIND commands, see Chapter 8.)

Second Edition

Tracing

Commands discussed in this c...

TRACEPOINT WATCH STRACE
L I S T W A T C H L I S T T R A C E B A C
L I S TA L L U N W AT C H U N W I N D
C L E A R V T R A C E
CLEARALL ETRACE

INTRODUCTION

This chapter describes and demonstrates all of the Debugger's tracing
features, which include:

• Setting trace messages, known as tracepoints, at a statement or
at the entry to or exit from a program block with the TRACEPOINT
command.

• Displaying and deleting tracepoints with the LIST, LISTALL,
CLEAR, and CLEARALL commands. (See also Chapter 5.)

• Value tracing — tracing the value of a variable and displaying
a message any time the value changes with the WATCH, UTWATCH,
WATCHLIST, and VTRACE commands.

• Entry tracing — setting a trace message at the entry to or exit
from a program block with the ETRACE command.

• Statement tracing — setting a trace message at every statement
or every labelled statement with the STRACE command.

• Tracing the currently active program blocks (the call/return
stack) with the TRACEBACK command.

This chapter also describes the program control command, UNWIND, which
erases the call/return stack.

Second Edition

DOC4033-193

SETTING TRACEPOINTS

A tracepoint is like a breakpoint. However, instead of suspending
execution on a statement, entry to, or exit from a program block, a
tracepoint just displays a message each time the statement, entry, or
exit is encountered. Execution does not stop.

Setting a tracepoint is useful for calling attention to a particular
spot in your program execution.

The format of the TRACEPOINT command, abbreviated TRA, is:

POINT [breakpoint-identifier] [-AFTER value]
[-BEFORE value] [-_VERY value] [-COUNT vaT

The breakpoint-identifier is the statement, entry, or exit on which you
want to set a tracepoint. (The breakpoint-identifier is explained in
more detail in Chapter 5.)

As you can see, the syntax and features of TRACEPOINT are very much
like BREAKPOINT, except that TRACEPOINT does not allow action lists or
the -EDIT option.

The following example demonstrates the TRACEPOINT command and the
resulting tracepoint messages:

> TRACEPOINT 24
> TRACEPOINT DAYS INWDNTHXIO
> RESTART

[IN$$\24**** $$MAIN$$.DAYS_IN_MONTH\10

**** Program execution complete,
>

For a complete explanation and demonstration of the tracepoint
options, see the section on setting breakpoints in Chapter 5.
Just substitute a tracepoint wherever a breakpoint is used.

Second Edition

TRACING

DISPLAYING AND DELETING TRACEPOINTS

The Debugger's LIST and LISTALL commands display the attributes of
tracepoints as well as breakpoints. The LIST command displays the
attributes of one tracepoint:

> LIST 14
Type Location
tra $$MAIN$$\14, count = 0

The LISTALL command, abbreviated LSTA, can list the attributes of all
tracepoints:

> LISTALL -TRACEPOINTS
Tracepoints at:

$$MAIN$$\24, count = 0
$$MA]^$$.DAYS_IN_M0NrH\17, count
$$MAIN$$.DAYS_IN_i1ONTH\10, count

>

The Debugger's CLEAR and CLEARALL commands delete tracepoints as well
as breakpoints. The CLEAR command, abbreviated CLR, deletes a
t racepo in t :

> CLEAR 14

The CLEARALL command, abbreviated CLRA, can delete all tracepoints:

> CLEARALL -TRACEPOINTS

For a complete explanation and demonstration of the LIST,
LISTALL, CLEAR, and CLEARALL commands, see Chapter 5. These
commands function the same with tracepoints as they do with
breakpoints.

Second Edition

DOC4033-193

VALUE TRACING

In Chapter 3, you learned how to trace the changing value of a variable
through the execution of your program with the WATCH command. This
process is called value tracing. Value tracing is useful for finding
out when and how unusual values are assigned to variables during
execution. Pinpointing the spot where a certain value has been
assigned or not assigned can help you correct a program error.

During value tracing, a message is displayed each time the value of a
specified variable changes. The Debugger displays the former value,
the new value, and the program location where the change was detected.
The WATCH command specifies which variables are to be traced.

The WATCH Command

You must specify which variables you want to trace during the execution
of your program with the WATCH command. The format of the WATCH
command, abbreviated WA, is:

where variable-1, variable-2, and so on, are the variables that you
want to trace or "watch."

In order to indicate that an automatic variable should be watched only
in a specific activation of a program block, you may give an activation
number. If the activation number is omitted, the variable will be
watched in all activations.

When you use the WATCH command to trace variables, these variables are
placed in an internal Debugger table known as the watch list. You can
add variables to the watch list any time. They remain in the watch
list until you remove them with the UWJATCH command, described later in
this chapter. The WATCHLIST command, also described later in this
chapter, displays the names of variables in the watch list.

Consider the following FORTRAN program:

1: INTEGER A
2: DIMENSION A (3)
3:
4: N = 0
5: DO 10 I = 1, 3
6: N = N + 1
7: 10 A(I) = N8: STOP
9: END

Second Edition

TRACING

Here is an example of the WATCH command used to trace the changing
values of the variables N and A in this program:

> WATCH N, A
> RESTART
The value of $MATN\£I has been changed at $MAIN\7 ($10)

from 0
to 1

The following values in $MAIN\A have been changed at $1AIN\6
A(l) from 0

to 1
The value of $MAIN\$ has been changed at $MATN\7 ($10)

from 1
t o 2

The following values in $MAIN\A have been changed at $IAIN\6
A (2) from 0

t o 2
The value of $MAIN\^ has been changed at $MAIN\7 ($10)

from 2
t o 3

The following values in $MAIN\A have been changed at $MAIN\8 ($10+1)
A (3) from 0

t o 3

**** STOP

Program stop at $MAIN\8 ($10+1).
>

In the example shown above, notice how a message is printed whenever an
element in the array A changes. In general, a message is printed only
for those elements in arrays or structures that change.

Second Edition

DOC4033-193

In this next example, the WATCH command is used to trace the changing
value of the variable PAY in an RPG program:

> WATCH PAY
> RESTART
The value of RPG$MAIN\PAY has

from 0.00
to 146.80

The value of RPG$MAIN\PAY has
from 146.80
to 180.00

The value of RPG$MAIN\PAY has
from 180.00
to 200.00

The value of RPG$MAIN\PAY has
from 200.00
to 119.60

The value of RPG$MA_N\TJAY has
from 119.60
to 270.00

been changed at RPG$MAIN\11

been changed at RPG$MAIN.SUBFU\16

been changed at RPG$MA_N.SUBRJ\16

been changed at RPG$MAIN\11

been changed at RPG$MAIN.SUBI_\16

You can watch any portion of an array or structure. For example, to
watch the array cross section specified by TABLE (2, *), you would
enter:

> WATCH TABLE (2, *]

To watch variables in another block, enter the desired block name

> WATCH SUBR1\Y, SUBR2\TEST (8)

Value tracing is useful in recursive program blocks. For example, to
watch the variable N in only the third activation of a block named
FACTORIAL, enter:

> WATCH FACTORIALS

The way in which watched variables are monitored differs for each
storage class. Specifically:

• The value of a static variable is saved when the WATCH command
is given and is watched throughout the debugging session unless
it is removed fcy the UNWATCH command. (All COBCL variables are
s t a t i c .)

Second Edition

TRACING

Each generation of an automatic variable is watched unless a
specific generation is designated by the user. The value is
saved upon program block entry and monitored until the program
block becomes inactive.

A PL/I-G based variable or Pascal dynamic variable is saved and
watched according to the storage class of its locator (pointer).
That is, qualification by a static or "constant" locator causes
the based or dynamic variable to be watched as though its
storage class were static, by an automatic locator as though its
storage class were automatic.

PL/I-G controlled variables cannot be watched.

Watching PL/I-<5, Pascal, and C Pointer Variables: When a PL/I-G based,
Pascal dynamic, or a C pointer variable is added to the watch list, the
locator or pointer expression is evaluated at the time the WATCH
command is given, and the resulting address is used as the locator or
pointer as long as the variable remains in the watch list. Therefore,
at the time a variable is added to the watch list:

• The block containing the locator/pointer must be active if the
locator or pointer is automatic.

• The locator/pointer must be initialized to the desired address.
(This applies even if the variable is not automatic.)

For example, consider the following PL/I-G program:

PROCEDURE;

DECLARE LAST_JSAME CHARACTER (15) ;
DECLARE LOCATOR POINTER;
DECLARE STRING8 BASED CHARACTER (8) ;

LAST_NAME = 'Washington
LOCATOR = ADDR (LAST_NAME);
LAST_NAME = 'Jefferson

END; /* PI */

Second Edition

DOC4033-193

In order to watch LOCATOR -> STRING8, PI must be active, and LOCATOR
must be initialized. Thus, the WATCH command cannot be given until
after execution of the statement on source line number 9 as follows:

**** breakpointed at Pl\10
> WATCH LOCATOR -> STRING8
> CONTINUE
The value of P1\L0CAT0R -> STRING8 has been changed at Pl\ll

from 'Washingt'
t o ' J e f f e r s o '

Alternatively, you may watch STRING8 any time after entry to PI by
specifying a constant pointer:

> WATCH ADDR (LASTJ&ME) -> STRING8

Even if the value of the locator or pointer in the user program changes
value, the address computed when the based, dynamic, or pointer
variable was added to the watch list will continue to be used for value
t r a c i n g .

In the sections that follow, you will learn how to display the
variables in the watch list, remove variables from the watch list, turn
off value tracing without disturbing the contents of the watch list,
and use value tracing only on the entries and exits to program blocks.
These features involve the Debugger's WATCHLIST, UNWATCH, and VTRACE
commands.

The WATCHLIST Command

The WATCHLIST command displays the names of the variables currently in
the watch list. The format of the WATCHLIST command, abbreviated WL,
i s :

Here is an example of the WATCHLIST command;

> WATCHLIST
MAIN\X
MAIN\LIST
MAIN\TABLE(2,*)
SUBR1\Y
SUBR2\TEST(8)
FACT0RIAL\3\^

Second Edition

TRACING

The UWATCH Command

The UNWATCH command removes one or more variables from the watch list.
The format of the UWATCH command, abbreviated UW, is:

where variable-1, variable-2, and so on, are variables you want to
remove from the watch list.

If you specify the -ALL option, all variables are removed from the
watch list.

As in the WATCH command, if the program block name is omitted, the
block corresponding to the current evaluation environment is used.

To remove the variables LIST, Y, and TEST(8) from the watch list,
en te r :

> UWATCH MAIN\LIST, SUBR1\Y, SUBR2\TEST (8)

To remove all variables from the watch list, enter:

> UtWATCH -ALL

You can discontinue value tracing without "unwatching" all of the
variables in the watch list by entering the VTRACE OFF command, which
is explained in the next section.

The UWATCH command does not disable value tracing unless the
watch list becomes empty.

Second Edition

DOC4033-193

The VTRACE Command

You can disable, enable, or change the frequency of value tracing with
the VTRACE command. The format of the VTRACE command, abbreviated VT,

If you specify the ENTRY_EXIT option, abbreviated EE, the values of
variables in the watch list are compared only at the entry to and exit
from each program block. This is useful for narrowing down the area in
which a variable is modified, since entry/exit value tracing is
substantially faster than full value tracing. For example:

> WATCH BESTPRESIDENT
> VTRACE ENTRY EXIT
> RESTART
The value of A\BEST_PRESIDENT has been changed at entry to A.B

from ''
to 'Truman '

The value of A\^EST_PRESIDENT has been changed at entry to A.B.C
from 'Truman'
to 'Nixon '

**** Program execution complete.
>

If you specify the OFF option, value tracing does not occur, but the
contents of the watch list are undisturbed. For example:

> WATCH N, A
> VTRACE OFF
> RESTART

**** stop

Program stop at $MAIN\8 ($10+1).
> WATCHLIST
$MAIN\
$MAIN\JSI
>

Second Edition

TRACING

If you specify the FULL option, abbreviated F, value tracing is enabled
once again at every statement. That is, the values of variables in the
watch list are compared at every executable statement.

Note

When the WATCH command is entered, the variables specified are
watched at every statement unless you use the VTRACE command to
enable entry/exit value tracing or to turn off value tracing
completely. If value tracing is turned on again after being
turned off, the saved value of each watched variable is
immediately updated to its current value.

ENTRY TRACING

During your debugging sessions, you may want to display a trace message
each time a program block is called or returned. This process is known
as entry tracing, which is enabled with the ETRACE command.

The format of the ETRACE command, abbreviated ET, is:

If you specify the ON option, a trace message is displayed when each
program block is called and returned. Here is an example of the ETRACE
(M command used with a Pascal program that has one function named
DAYS_nODNrH:

> ETRACE ON
> RESTART
**** entry to $$MAIN$$
**** entry to $$MAIN$$.DAYS_IN_MONrH
**** exit from $$MATN$$.DAYS_IN_MONTH into $$MAIN$$\24
**** exit from $$MAIN$$

**** Program execution complete.
>

Second Edition

DOC4033-193

If you specify the ARGS option, not only do trace messages appear at
the entry and exits to called program blocks, but the values of
arguments passed to each called block are also displayed at each entry.
The argument values are not displayed at the exits. Here is an example
of the ETRACE ARGS command:

> ETRACE ARGS
> RESTART
**** entry to $$MAIN$$
**** entry to $$MAIN$$.DAYS_IN_MONTH
MONTH_IN = SEPTEMBER
YEAR_.IN = 1983**** exit from $$MAIN$$.DAYS__N[_MONrH into $$MAIN$$\24
**** exit from $$MAIN$$

**** Program execution complete.
>

If you specify the OFF option, entry tracing is turned off,
example:

> ETRACE ON
> RESTART
**** entry to $$MAIN$$
**** entry to $$MAIN$$.DAYS_IIODNTH
**** exit from $$MAIN$$.DAYS_IN_MDNTH into $$MAIN$$\24
**** exit from $$MAIN$$

**** Program execution complete.
> ETRACE OFF
> RESTART
**** Program execution complete.
>

STATEMENT TRACING

At some point you might want to display a trace message prior to the
execution of every statement in your program. This feature is known as
statement tracing, which is invoked with the STRACE command. The
ormat of the STRACE command, abbreviated ST, is:

Second Edition

TRACING

If you specify the FULL option, abbreviated F, the Debugger displays a
trace message prior to the execution of every statement in your
program. For example:

> STRACE FULL
> RESTART
**** $MAIN\4
**** $MAIN\5
**** $MAIN\6
**** $MAIN\7 ($10)
**** $MAIN\6
**** $MAIN\7 ($10)
**** $MAIN\6
**** $MAIN\7 ($10)
**** $MAIN\8 ($10+1)

**** STOP

Program stop at $MAIN\8 ($10+1).
>

If you specify the QUIET option, abbreviated Q, the Debugger displays a
trace message only prior to the execution of each labelled statement.
(Chapter 4 defines labels for each language.) For example:

> STRACE QUIET
> RESTART
**** $MAIN\7 ($10)
**** $MAIN\7 ($10)
**** $MAIN\7 ($10)

**** STOP

Program stop at $MAIN\8 ($10+1).
>

The OFF option turns off statement tracing.

Second Edition

DOC4033-193

Entry tracing and statement tracing are independent of one
another and may be enabled or disabled at any point during the
debugging session. Furthermore, use of these tracing features
is applicable to the entire debugging environment. You cannot,
strictly speaking, enable statement or entry tracing for one
part icular rout ine. This effect can be achieved using
breakpoints. You may set a breakpoint at the entry of a
program block specifying an action list that contains the
appropriate trace commands. In order to continue program
execution, the trace commands should be followed by a CONTINUE
command. Similarly, tracing can then be disabled by setting a
corresponding exit breakpoint with the appropriate trace
disable commands contained within an action list.

TRACING YOUR ACTIVE PROGRAM BLOCKS

While your program executes, PRIMDS keeps a list of program blocks that
are currently active in your program's execution. The list could
include, for example, the Debugger's call to your main program when you
enter a RESTART command, or your main program's call to a procedure,
function, or subroutine.

When such a call is encountered, the call is placed on an internal
stack known as the call/return stack. Each call that is placed onto
the stack is known as a call/return stack frame. You can look at the
contents of this stack with the TRACEBACK command, which is described
later in this section.

Looking at the contents of the call/return stack, frame by frame, is
useful for seeing the sequence of your program block calls. For
instance, you might see that one of your subroutines or functions was
called at the wrong place at the wrong time.

When you look at the call/return stack with the TRACEBACK command, each
frame can provide you with the following information:

• The name of the block that was called, known as the owner block

The name of the calling block and the source line number on
which the call was made

The name of the block and the source line number on which the
call returns

The internal addresses of the call and the return

On-unit information

The stack frame number

Second Edition

TRACING

The TRACEBACK command also gives you the current location of the
execution environment pointer.

By now you are wondering what the stack looks like. Assume you just
placed a breakpoint at the entry to a subroutine named TEST. When
execution is suspended at that entry, you want to look at the
call/return stack. The stack would look something like this:

**** breakpointed at entry to $MATN.TEST
> TRACEBACK
Currently at entry to TEST.
Stack contains 3 frames.

3: Owner is "TEST".
Called from $MAIN\3, returns to $MATN\4.

2: Owner is "$MAIN".
Called from debugger, returns to debugger.

1: Debugger-owned frame.

In the example shown above, notice how each frame is listed from the
most recent frame (3) to the oldest frame (1). In other words, when
you read the stack from top to bottom, you are going back in time to
the beginning of execution. The Debugger assigns a number to each
frame. The least recent is frame 1, and the most recent is the number
of frames on the stack. As you can see, the frame number is printed in
the lefthand margin.

is of Frames

The call/return stack can provide various types of information in each
of its frames. This information may or may not be useful to you,
depending on your needs and depending on how experienced a programmer
you are. A call/return stack frame provides one of five types of
information and has one of the following formats:

User-owned call frame. For example:

3: Owner is "TEST".
Called from $MAIN\43, returns to $MAIN\45.

User-owned frames are identified by the program block name. For
each user-owned frame, the frame owner (name of the program
block that owns the frame), call location, and return location
are displayed. You may request that memory addresses that

Second Edition

DOC4033-193

correspond to these program locations also be displayed. Also,
you can request that the names of the on-units declared within
the frames be displayed.

Condition frame. For example:

4: CONDITION FRAME for "ARITH$",
returns to location 13(3)/1720.
Condition initiated by hardware fault,
detected at $MAIN\3.
Corrective action by on-unit is required.

For each condition frame, the information displayed includes the
condition name, program location of where it was raised, program
location of where it returns, signal source (software or
hardware related), and crawlout information, where applicable.

COBOL does not allow on-units, which are routines to
handle error conditions such as division by zero and
arithmetic overflow. The COBOL 74 Reference Guide
discusses how to handle some common error conditions
within COBOL. For other languages, see the chapter on
the condition mechanism in the Subroutines Reference
Guide.

Fault frame. For example:

3: FAULT FRAME; fault type "ARTTH" (50)
Fault returns to $MAIN\3.
Fault code 403, fault address 0(0)/0

For each fault frame, information displayed includes the fault
type, code, and address, and the program location of where the
fault returns.

Debugger-owned frame. For example:

14: Debugger-owned frames, through frame 4.

Debugger-owned frames are normally listed in "compressed" form,
meaning that the traceback will indicate only that several
debugger-owned frames exist between two user-owned frames or at
the root of the stack. Debugger-owned frames at the top of the
stack are never displayed. You may request that these debugger

Second Edition

TRACING

frames be displayed, listing the linkbase addresses of each
frame owner and procedure base called-from and returns-to
addresses. (This information, which is meaningless to most
users, is discussed in the SEG and LOAD Reference Guide
(Rev. 19.2) and in the System Architecture Reference Guide.)

16: Debugger CALL frame.
Called from debugger, returns to debugger.

A Debugger CALL frame represents a program block invoked with
the Debugger's CALL command. (See Chapter 7.) CALL frames are
generated immediately prior to user-owned frames as a result of
calling a user program block from Debugger command level with
the CALL command.

Condition frames and fault frames are generated fcy error conditions
occurring in your program execution, and they provide internal
information on the operating system's attempts to deal with the errors
encountered. (For more information on conditions and faults, see the
Prime User's Guide and the Subroutines Reference Guide.)

The TRACEBACK command, which allows you to see the contents of the
call/return stack, is fully explained in the following section.

The TRACEBACK Command

The TRACEBACK command allows you to look at the contents of the
call/return stack and the useful information that the stack provides.
(See the previous section.)

The format of the TRACEBACK command, abbreviated TB, is:

The value is a positive non-zero integer.

Second Edition

DOC4033-193

If you use the TRACEBACK command fcy itself, with no arguments, all
frames on the stack are printed in order from the most recent frame to
the least recent frame. For example:

> TRACEBACK
Currently at TEST.SWTTCH\47.
Stack contains 6 frames.

6: Owner is "TEST.SWITCH".
Called from TEST.SORT\69, returns to TEST.SORT\69.

5: Owner is "TEST.SORT".
Called from TEST\77, returns to TEST\78.

4: Owner is "TEST".
Called from debugger, returns to debugger.

3: Debugger-owned frames, thru frame 1.

If you specify the -FRAMES option, the number of frames displayed is
limited to the specified value. These will be the most recent frames,
unless you specify the -LEAST_RECENT option, in which case they will be
the least recent frames. For example:

> TRACEBACK -FRAMES 2
Currently at TEST.SWTTCH\47.
Stack contains 6 frames.

6: Owner is "TEST.SWITCH".
Called from TEST.SORT\69, returns to TEST.SORT\69.

5: Owner is "TEST.SORT".
Called from TEST\77, returns to TEST\78.

Second Edition

TRACING

If you specify the -FRCM option, the traceback starts from the frame
number (the value) that follows -FRCM. If you specify the -TO option,
the last frame that is displayed is the frame number represented by
value. Here is an example of both the -FROM and -TO options:

> TRACEBACK -FRCM 5 -TO 4
Currently at TEST.SWTTCH\47.
Stack contains 6 frames.

5: Owner is "TEST.SORT".
Called from TEST\77, returns to TEST\78.

4: Owner is "TEST".
Called from debugger, returns to debugger,

If you specify the -REVERSE option, the frames are listed in reverse
order from least recent to most recent. For example:

> TRACEBACK -REVERSE
Currently at TEST.SWTTCH\47.
Stack contains 6 frames.

1: Debugger-owned frames, thru frame 3.

4: Owner is "TEST".
Called from debugger, returns to debugger.

5: Owner is "TEST.SORT".
Called from TEST\77, returns to TEST\78.

6: Owner is "TEST.SWITCH".
Called from TEST.SORT\69, returns to TEST.SORT\69.

Second Edition

DOC4033-193

If you specify the -DBG option, Debugger-owned frames are displayed in
expanded form. For example:

> TRACEBACK -DBG
Currently at TEST.SWTTCH\47.
Stack contains 6 frames.

6: Owner is "TEST.SWITCH".
Called from TEST.SORT\69, returns to TEST.SORT\69.

5: Owner is "TEST.SORT".
Called from TEST\77, returns to TEST\78.

4: Owner is "TEST".
Called from debugger, returns to debugger.

3: Debugger-owned frame.
Called from debugger, returns to debugger.

2: Debugger-owned frame.
Called from debugger, returns to debugger.

1: Debugger-owned frame.
Called from location 4000(0)/50, returns to location 4000(3)/52.

If you specify the -ONUNITS option, the names of all on-units and their
addresses are displayed for each frame. The address format is:

segment-number(ring-number)/address

For example:

> TRACEBACK -CNUNTIS -DBG -FRCM 3 -TO 1
Currently at TEST.SWTTCH\47.Stack contains 6 frames.

3: Debugger-owned frame.
Called from debugger, returns to debugger.
Onunit for "STACK_OvT$" is 4000(3)/152574.
Onunit for "NONLOCAL_GCTO$" is 4000(3)/152734.
Onunit for "BAD_^NLOCAL_GOTO$" is 4000(3)/153010,
Onunit for "ARTTH$" is 4000(3)/153272.
Onunit for "ILLEGAL_INSr$" is 4000(3)/153072.
Onunit for "REENTER$" is 4000(3)/153142.
Onunit for "ANY$" is 4000(3)/152540.
Onunit for "QUTT$" is 4000(3)/153214.

Second Edition

TRACING

2: Debugger-owned frame.
Called from debugger, returns to debugger.

1: Debugger-owned frame.
Called from location 4000(0)/50, returns to location 4000(3)/52.

If you specify the -ADDRESSES option, the following internal address
information is displayed:

The stack and stack root segment numbers. (See the SEG and LOAD
Reference Guide for explanation.)

The stack frame address within the stack segment of each program
block or frame.

• The linkbase address of the frame owner (segment number, ring
number, and address within segment).

The called-from and returns-to addresses.

• The on-unit ECB address if the -ONUNITS option is specified.
(See the System Architecture Reference Guide for a discussion of
ECBs.)

Here is an example of the -ADDRESSES option:

> TRACEBACK -ADDRESSES
Currently at TEST.SWTTCH\47.
Stack contains 6 frames.

Stack segment is 4037, root segment is 4037.

6, 146070: Owner is "TEST.SWITCH", owner LB is 4002(0)/177400
Called from TEST.SORT\69 (location 4001(0)/2112),
returns to TEST.SORT\69 (location 4001(3)/2120).

5, 145762: Owner is "TEST.SORT", owner LB is 4002(0)/177400.
Called from TEST\77 (location 4001(0)/2163),
returns to TEST\78 (location 4001(3)/2171).

4, 145704: Owner is "TEST", owner LB is 4002(0)/177400.
Called from debugger (location 2040(0)/101064),
returns to debugger (location 2040(3)/101066).

3, 145210: Debugger-owned frames, thru frame 1.

Second Edition

DOC4033-193

TRACEBACK and Recursive Blocks: The TRACEBACK command is a very useful
tool to have when you are debugging recursive program blocks. The
call/return stack shows you the currently active recursive calls, where
each frame represents a block calling itself — an activation of that
block. Here is an example of the TRACEBACK command used with a
recursive Pascal procedure named JUMP contained within its main program
named FROG:

> TRACEBACK
Currently at FR0G.JUMP\42.
Stack contains 8 frames.

8: Owner is "FROG.JUMP", activation 4.
Called from FR0G.JUMP\59, returns to FR0G.JUMP\61.

7: Owner is "FROG.JUMP", activation 3.
Called from FROG.JUMP\59, returns to FR0G.JUMP\61.

6: Owner is "FROG.JUMP", activation 2.
Called from FROG.JUMP\59, returns to FR0G.JUMP\61.

5: Owner is "FROG.JUMP", activation 1.
Called from FR0G\73, returns to FR0G\74.

4: Owner is "FROG".
Called from debugger, returns to debugger.

3: Debugger-owned frames, thru frame 1.

In the example shown above, notice how each frame displays the
activation number of each recursive call, keeping track of how many
times JUMP calls itself. If you want to evaluate a variable or other
expression in any particular activation of JUMP, you can look at the
call/return stack, decide which activation you need, then evaluate the
var iab le .

Second Edition

TRACING

ERASING THE CALL/RETURN STACK WITH UTWIND

You can erase the call/return stack and cause the execution environment
pointer to become undefined with the U1WIND command. This command is
especially useful for eliminating multiple invocations of the Debugger
resulting from the CALL command.

The format of the UMIND command is:

Here is an example of the UNWIND command:

(8:TEST) > U^WIND
> WHERE
Execution environment is undefined.

(The call/return stack is discussed earlier in this chapter. The CALL
command is discussed in Chapter 7.)

Second Edition

Customizing \bur
Debugger

Commands —Macros

MACRO
'CROLIST

ACTIONLIS

INTRODUCTION

This chapter shows you how to customize your Debugger commands — how
to create a new command name that can be used in place of one or more
Debugger commands. These new command names, known as macros, are
created with the MACRO command.

If you do a lot of debugging, you will find that macros are wonderful
time savers. Instead of entering the same sequence of Debugger
commands over and over again, you can take a shortcut fcy creating
macros to do the dirty work for you.

The Debugger's powerful features that create and manipulate macros are
discussed and demonstrated in the sections that follow. (See also
Chapter 12, ADVANCED MACROS.)

Second Edition

DOC4033-193

CREATING AND USING MACROS

All macros are created with the MACRO command. The format of the MACRO
command, abbreviated MAC, is:

I command-list j
name I -DELETE \

-EDIT

-OiANGE_JB__] old-macro-name new-macro-
-ON

The macro-name is the name of the macro that you want to create. The
command-list is the list of one or more Debugger commands that you want
vour macro name to stand for. When vou create a macro, the commandyour macro name to stand for. When you create a macro, the command
list must be enclosed in square brackets, and the commands must be
separated by semicolons. Here is an example of how a macro is created:

> MACRO LOOK \WHERE: SOURCE PRINT"

Based on the example shown above, whenever you enter the LOOK command,
the Debugger will interpret it as WHERE; SOURCE PRINT.

The -DELETE option, abbreviated -DL, deletes a specified macro. For
example:

> MACRO LOOK -DELETE

The -EDIT option, abbreviated -ED, invokes the Debugger's command line
editor so that you can modify the macro specified by macro-name. (See
Chapter 10.)

The -CHANGE_JNAME option, abbreviated -CN, changes the name of
from old-macro-name to new-macro-name. For example:

macro

> MACRO -CHANGE NAME LOOK SEE

The -OFF option turns off the use of macros without destroying your
current macros. The -ON option enables the use of macros once again.
For example:

> MACRO -OFF
> MACRO -ON

Second Edition

MACROS

Figure 9-1 illustrates the execution of a macro.

You define macro: > MACRO LOOK [WHERE; SOURCE PRINT]

You enter:

The Debugger executes:

Execution of a Macro
Figure 9-1

Usinq Parameters with Macros

Your macros can accept command line parameters whenever you need
different variations of a macro. To create a macro so that you can
optionally use one or more parameters, enclose a positive integer
within percent signs (%) in the command list for every parameter you
intend to use.

For example, consider the following macro definition:

> MACRO RS [RESTART %1%; SOURCE PRINT]

Second Edition

DOC4033-193

In the example shown above, the 1 enclosed in percent signs means that
the first parameter you use after the RS command will be plugged into
that spot in the macro list command sequence. In other words, if you
enter the parameter STEP as the first parameter after the RS command,
then:

> RS STEP

will be interpreted by the Debugger as;

RESTART STEP; SOURCE PRINT

Similarly, if you want to use two parameters with your macro, define
the position of both the first and second parameters in the macro list
command sequence. For example:

> MACRO RS [RESTART %1%; SOURCE PRINT %2%]

In the example shown above, the 1 marks the position where the first
parameter will be used and the 2 marks the position where the second
parameter will be used. Therefore, if you use the RS macro this way:

> RS STEP 5

the Debugger will interpret it as:

RESTART STEP; SOURCE PRINT 5

where STEP is the first parameter, which replaces %1%, and 5 is the
second parameter, which replaces %2%.

Second Edition

MACROS

In the next example, the same parameter is used twice in the same
command list:

> MACRO AR [: AR1[%1%]; : AR2[%1%;

Given the macro command list shown above, if you enter;

> AR 5

the Debugger will interpret it as;

: AR1[5]; : AR2[5]

Use of macro command line parameters is optional. Even if your
command list expects parameters, you do not have to use them.
If you enter the RS command without parameters, based on its
command list shown above, the Debugger will simply interpret it

RESTART; SOURCE PRINT

If you enter a parameter when your macro expects no parameters,
or if you enter a parameter beyond the highest numbered
parameter in the macro list, then that parameter is appended to
the command list. For example, suppose your macro RS expects
no parameters. If you enter RS 5, the Debugger will interpret
it as:

RESTART; SOURCE PRINT 5

Second Edition

DOC4033-193

Figure 9-2 illustrates the execution of a macro that contains
parameters.

You define macro: > MACRO RS [RESTART %1%; SOURCE PRINT %2%]

You enter: > RS(STEPV5N»
/ »/

The Debugger processes:

The Debugger executes: RESTART STEP; SOURCE PRINT 5

Execution of a Macro Containing Parameters
Figure 9-2

Using Parameters that Contain Spaces: Often you might want to use a
parameter that contains one or more spaces. For example, you might
want to enter STEP 4 as one parameter. To use a parameter that
contains one or more spaces, enclose the parameter in single quotes on
the macro command line. For example:

> RS 'STEP 4'

Second Edition

MACROS

This macro command will be interpreted fcy the Debugger as:

RESTART STEP 4; SOURCE PRINT

Usinq Literal Sinqle Quotes in Parameters: If you want to use one or

character strings, each quote in the parameter must be doubled, then
the entire parameter must be enclosed in quotes. For example, suppose
you defined this macro named V:

> MACRO V [i 'VALUE = ' I I %1%]

(The || operator is the PL/I-G character str ing concatenation
operator.)

Based on the macro definition shown above, if you enter the following
macro command:

> V ' ' 'str ing' ' '

the Debugger interprets it as:

: 'VALUE =- t i l l STRING

Similarly, if you enter this macro command:

> V "'strinq of A""S

the Debugger interprets it as:

: 'VALUE =- • M l STRING OF A1

Similarly, if you enter:

> V 'STRING'

the Debugger interprets it as:

: 'VALUE = STRING

Second Edition

DOC4033-193

___S^>M*
in a parameter, so that is not interpreted as a special symbol, enter
two consecutive percent signs.

Some Macro Examples

The following are examples of macros that can simplify your debugging
sessions. (See also Chapter 12, ADVANCED MACROS.)

• To display five lines of source code, enter:

> MACRO P5 [SOURCE PRINT 5]

To display the next line of source code, enter:

> MACRO N [SOURCE NEXT]

To step into a called program block and display the first
executable statement, enter:

> MACRO SP [STEPIN; SOURCE PRINT"

To use the source PRINT subcommand without using SOURCE, enter:

> MACRO P [SOURCE PRINT %1%"

To display a particular line of code in a particular evaluation
environment, enter:

> MACRO FT [ENVIRCNMENT %1%; SOURCE POINT %2%"

You can use a macro name to define another macro. For example,
consider these three macro definitions:

> MACRO LOOK [WHERE; SOURCE PRINT"

> MACRO SEE [STEP: SOURCE PRINT"

> MACRO GAWK [LOOK; SEE

Second Edition

MACROS

DISPLAYING ALL YOUR MACROS

You can display one or all of your currently defined macros and their
command lists with the MACRCLIST command.

The format of the MACROLIST command, abbreviated ML, is:

The macro-name is the name of a specific macro that you want to
d isp lay.

When macros are created, they are placed into an internal Debugger
table, known as the macro list. If you enter the MACRCLIST command fcy
itself, with no macro name, all macros in the macro list and their
corresponding command lists are displayed. For example:

> MACROLIST
BALW [BREAKPOINT %1% [%2%; WHERE]]
BCC [BREAKPOINT %1%; CLEAR; CONTINUE]
DEC [:FORTRAN, DECIMAL :%1%]
RS [RESTART %1%; SOURCE PRINT]
STS [STEP; SOURCE EX]

If you want to display the command list for only one macro, enter the
macro name following the MACRCLIST command:

> MACROLIST BCC
BCC [BREAKPOINT %1%; CLEAR; CONTINUE]

Caution

Once you leave the Debugger and return to PRIMOS command level,
the macros in your macro list are destroyed, just as all
breakpoints and tracepoints are destroyed. If you want to save
your macros as well as breakpoints and tracepoints for future
debugging sessions, see the discussion on the SAVESTATE and
LOADSTATE commands in Chapter 10.

Second Edition

DOC4033-193

Displavinq Macros with ACTIONLIST Command

The ACTIONLIST command, which was introduced in Chapter 5, can display
the contents of a macro command list prior to its execution. The
format of the ACTIONLIST command, abbreviated AL, is:

Normally, no lists are displayed prior to their execution. The PRINT
option specifies all lists to be displayed. The SUPPRESS option
deactivates the PRINT option, causing no lists to be displayed.

For example, to cause a macro command list to be displayed prior to
execution, enter:

> ACTIONLIST PRINT
> MACRO E [: TS.ARR1(%1%) .VALUE - TS.ARR2(%2%, %1%) .VALUE]
> E 3 2

<1> : TS.ARR1(3) .VALUE - TS.ARR2(2, 3) .VALUE
2

The ACTIONLIST command also can display the contents of breakpoint
action lists. (For more information on the ACTIONLIST command, see
Chapter 5.)

Second Edition

Modifying and Saving
Debugger Commands

*nands discussed in this chap.

i S U B M I T S A V E S l A l i
EAKPOINT -EDIT LOADSTAT

:ro -EDIT

rNTRCOUCTION

The Debugger's command line editor allows you to edit the most recent
command line entered and edit breakpoint action lists and macro command
lists. This editor is very useful when you have to fix mistakes in or
change command lines. It saves you the time of reentering the entire
command to fix a mistake or to make a desired change.

Besides being able to modify and edit your command lines, you can also
save all of your breakpoints, tracepoints, and macros in PRIMDS files.
Saving your breakpoints, tracepoints, and macros means that you can
pull them out of a file whenever you need them in future debugging
sessions. If you have a couple of favorite breakpoints or macros, or
if you use so many of them that they're hard to keep track of, this
Debugger feature is especially useful.

Specifically, this chapter discusses:

• Using the Debugger's command line editor.

• Modifying and editing the most recent command line entered with
the RESUBMIT command and the command line editor.

• Modifying and editing breakpoint action lists and macro command
lists with the command line editor.

• Saving your breakpoints, tracepoints, and macros by putting them
in a PRIMDS file with the SAVESTATE command.

Second Edition

DOC4033-193

Pulling your breakpoints, tracepoints, and macros out of the
PRIMOS file to use during future debugging sessions with the
LOADSTATE command.

USING THE COMMAND LINE EDITOR

The Debugger's command line editor has eight editing subcommands that
perform the following functions:

• Delete a character using the D subcommand.

• Define the first character of the command line using the F
subcommand.

• Define the last character of the command line using the L
subcommand.

• Append text to the end of the command line using the A
subcommand.

• Insert text using the I subcommand.

• Overlay text using the 0 subcommand.

• Replace the original command line and return to Debugger command
level by entering a carriage return.

Quit editing without replacing original command line and return
to Debugger command level using the Q subcommand.

When you enter the RESUBMIT, the BREAKPOINT -EDIT, or the MACRO -EDIT
command, the most recent command line or the specified breakpoint or
macro displays on your terminal. A colon (:) then appears on the next
line at the left margin. This colon is the command line editor prompt,
which waits for subcommand input.

The editor subcommands are described and demonstrated in the paragraphs
that follow.

Deleting a Character (D): The character under which the D is
positioned is deleted. The line is shifted to the left to fill in the
vacant character posit ion. Further edit operations are al lowed
following a D. Here is an example of the D subcommand:

Now is the time for all good good women..•
DDDDD DD

Now is the time for all good men...

Second Edition

MODIFYING AND SAVING COMMANDS

Defining the First Character (F): The character under which the F is
positioned becomes the first character of the line. The portion of the
line appearing to the left of the F is truncated. Further edit
operations are allowed following the F. Here is an example of the F
subcommand:

These are the times which try men's souls...
F

try men's souls...

Defining the Last Character (L): The character under which the L is
positioned becomes the last character of the line. The portion of the
line to the right of L is truncated. Further edit operations are
allowed following the L. Here is an example of the L subcommand:

If anything can go wrong, it will.
L

If anything can go wrong, it wil

Append Text to End of Line (A): The A subcommand causes the text that
follows the A to be appended to the end of the line. All text that
follows the A is interpreted literally. Here is an example of the A
subcommand:

Four scor
Ae and seven years

Four score and seven years

Insert Text (I): The I subcommand causes the text that follows it to
be inserted into the line following the character under which the I is
positioned. No further edit subcommands are allowed on the command
line after the I command is entered. Here is an example of the I
subcommand:

Let me make one thing clear.
I p e r f e c t l y

Let me make one thing perfectly clear.

Second Edition

DOC4033-193

Overlay Text (0): The 0 subcommand causes the characters that follow
it to be overlayed onto the line, starting at the character under which
the 0 appears. No further edit commands are allowed on the command
line. Here is an example of the 0 subcommand:

My kingdom for a horse!
DDDOlife

My life for a horse I

Finish Editing (carriage return): When you enter a carriage return, it
indicates that editing is finished. The edited command line replaces
the original command line.

Quit Editing (Q): The Q subcommand aborts the editing session and
returns you to Debugger command level without replacing the original
command line. Here is an example of the Q subcommand:

All of these command line editor subcommands are summarized in Table
10-1.

MDDIFYING THE MDST RECENT COMMAND

Using the Debugger's command line editor and the RESUBMIT command, you
can modify the most recent command you entered and resubmit that
command for execution. Modifying the most recent command is useful for
correcting mistakes.

The format of the RESUBMIT command, abbreviated RSU, is:

Assume that you have just entered the following Debugger command line

> CLEAR $MAIN\6; BREAKPOINT $MAIN\20; ETRACE ON; CONTINUE

CLEAR $MAIN\6
No such breakpoint.

Second Edition

MODIFYING AND SAVING COMMANDS

Table 10-1
Command Line Editor Subcommands

Subcommand Function

carriage return

Deletes the character under which the D is
posi t ioned.

Makes the character under which the F is
pos i t ioned the fi rs t charac te r o f the
command line.

Makes the character under which the L is
positioned the last character of the command
l i n e .

Appends the text that follows A to the end
of the line.

Inserts the text that follows I into the
line following the character under which the
I is positioned.

Overlays the characters that follow 0 onto
the line starting at the character under
which the 0 appears.

Finishes the editing session and replaces
original command line.

Aborts the editing session and returns to
Debugger command level, but does not replace
original command line.

10-5 Second Edition

DOC4033-193

Seeing this error message, you realize the breakpoint is at line 7, not
line 6. You also realize that entry tracing should be turned off, not
on. You then enter the following:

> RESUBMIT
CLEAR $MAIN\6; BREAKPOINT $MAIN\20; ETRACE ON; CONTINUE

: 0 7
CLEAR §MAIN\7; BREAKPOINT $MAIN\20; ETRACE ON; CONTINUE

: D D D D I O F F ;
CLEAR $MAIN\7; BREAKPOINT $MAIN\20; ETRACE OFF; CONTINUE

: (carriage return)
>

MODIFYING BREAKPOINTS AND MACROS

If you use breakpoint action lists and macros regularly, you will need
to change the contents of, or fix mistakes in, action lists and macro
command lists. The command line editor, combined with the -EDIT option
of the BREAKPOINT or MACRO command, is also used to modify breakpoints
and macros.

When you want to modify or edit an action list or macro, use the -EDIT
option of the BREAKPOINT or MACRO command respectively. For example,
enter :

> BREAKPOINT breakpoint-identifier -EDIT

or enter:

> MACRO macro-name -EDIT

The breakpoint-identifier, usually a source line number or statement
label, identifies the breakpoint as defined in Chapters 4 and 5.

The macro-name is the name of the macro you want to modify.
Chapter 9.)

a lso

When you enter either of these commands, the specified breakpoint
action list or macro command list displays on your terminal. A
colon (:) appears on the next line at the left margin. This colon is
the command line editor prompt, which waits for subcommand input. Here
is an example of the -EDIT option:

> BREAKPOINT 30 -EDIT
LET N = 'C; : B; : UCOUNT; WHERE; CONTINUE

Second Edition

MODIFYING AND SAVING COMMANDS

In the example shown above, the command line editor waits for you to
use its subcommands to edit the action list. (The editor subcommands
are described and demonstrated earlier in this chapter.)

Example Using Four Subcommands: The following example illustrates how
four command line editor subcommands are used to edit a breakpoint
action list. In this editing session, the LET command is replaced by
the WHERE command:

> BREAKPOINT 30 -EDIT
LET N = *C; : B; : UCOUNT; WHERE; CONTINUE

: F
: B; : UCOUNT; WHERE; CONTINUE

: IWHERE;
WHERE; : B; : UCOUNT; WHERE; CONTINUE

: D D D D D D D
WHERE; : B; : UCOUNT; CONTINUE

: (carriage return)
> LIST 30
Type Location
brk A\30, count = 0

[WHERE; : B; : UCOUNT; CONTINUE]

SAVING YOUR BREAKPOINTS, TRACEPOINTS, AND MACROS

If you create some useful breakpoint action lists, tracepoints, or
macros during your debugging sessions, you will want to save them to
use over again the next time you enter the Debugger. The SAVESTATE
command allows you to save your favorite breakpoints, tracepoints, and
macros in PRIMOS files that reside in your user file directory. Later
on, when you use the Debugger again, you can simply pull your
breakpoints, tracepoints, or macros out of these files and into the
debugging session. (See the LQADSTATE command later in this chapter.)

The SAVESTATE Command

The SAVESTATE command saves your breakpoints, tracepoints, and macros
and places them into a PRIMOS file in your directory for future use.
These files are also known as SAVESTATE files. The format of the
SAVESTATE command, abbreviated SS, is:

Second Edition

DOC4033-193

The filename is the pathname of the PRIMDS file where you want your
breakpoints, tracepoints, and macros placed. If you do not specify a
pathname, the file is placed into the directory to which you are
attached.

of your breakpoints, breakpoint action lists, tracepoints, and macros
are placed into the file specified by filename. For example:

> SAVESTATE DBGSTUFF

In the example shown above, all of the breakpoints, tracepoints, and
macros that you are using at the time this command is given are placed
into a PRIMOS file named DBGSTUFF in the directory to which you are
attached.

The -MACROS option, abbreviated -MAC, causes only your macros to be
placed into the file specified fcy filename. For example:

> SAVESTATE MYMACROS -MACROS

The -BREAKPOINTS option, abbreviated -BRK, causes only your breakpoints
and their action lists to be placed into the file. For example:

> SAVESTATE MYBREAKS -BREAKPOINTS

The -TRACEPOINTS option, abbreviated -TRA, causes only your tracepoints
to be placed into the file. For example:

> SAVESTATE MYTRACES -TRACEPOINTS

Caution

While you are debugging, if you want to add new breakpoints,
tracepoints, and macros to an existing file, first use the
LOADSTATE command to pull the contents of the existing file
into your debugging session. Then use SAVESTATE to add the new
information to that file. Do not do it the other way around.
If you save new information in a file that already exists
before using LQADSTATE, the contents of that file will be
destroyed and overwritten. (The LOADSTATE command is discussed
later in this chapter.)

Figure 10-1 illustrates the use of the SAVESTATE command.

Second Edition

MODIFYING AND SAVING COMMANDS

PRIMOS environment

Debugging environment user file
directory

> SAVESTATE BREAKS -BRK

> SAVESTATE MACROS -MACN \

\ \
BREAKS MACROS

The SAVESTATE Command
Figure 10-1

Manipulating SAVESTATE Files from PRIMDS

Your SAVESTATE files are PRIMOS files, similar to the other PRIMOS
files that reside in your directory. Therefore, you can edit, look at,
and create these files from PRIMOS command level using Prime's line
EDITOR or EMACS screen editor.

If you create your own SAVESTATE file using an editor, you
should add the word END-SAVE at the bottom of the file. The
END-SAVE must be the last line in your file so that the
LQADSTATE process terminates properly. When you create the
file with the SAVESTATE command from the Debugger, the END-SAVE
is automatically put at the bottom of the file for you.

Second Edition

DOC4033-193

RESTORING SAVED BREAKPOINTS, TRACEPOINTS, AND MACROS

If you have saved your breakpoints, tracepoints, and macros in a
SAVESTATE file during a previous debugging session, you can use them
again in later debugging sessions by restoring them with the LOADSTATE
command. LOADSTATE pulls the contents of your SAVESTATE file back into
your debugging session. (Saving breakpoints, tracepoints, and macros
with SAVESTATE is discussed in the previous section.)

The format of the LOADSTATE command, abbreviated LS, is:

The filename is the pathname of the SAVESTATE file that contains the
breakpoints, tracepoints, and macros you want to use. For example, if
you wanted to use macros that you had previously saved in a file named
MYMACROS, you would enter:

> LOADSTATE MYMACROS

The commands in the file execute without terminal output unless an
error occurs.

Note

If any of your breakpoints, tracepoints, or macros in the
SAVESTATE file contains a mistake, such as a misspelled
argument, or if your END-SAVE is missing from the bottom of the
file, you will receive an error message.

Figure 10-2 illustrates the use of the LOADSTATE command.

Second Edition

MODIFYING AND SAVING COMMANDS

PRIMOS environment

user file
directory

The LOADSTATE Command
Figure 10-2

You can restore the contents of any SAVESTATE file when invoking the
Debugger using the DBG command's -LOADSTATE option, abbreviated -LS.
For example:

OK, DBG TEST -LOADSTATE MYMACROS

The -LOADSTATE option is further discussed in Chapter 13

10-11 Second Edition

Other Features

, discussed in this chapter*

S O U R C E E X PA l
SOURCE NAME *
SOURCE RENAME AGAIN

INTROXJCriON

This chapter describes some miscellaneous Debugger features that
supplement the other features you learned about in Chapters 3 through
10. Specifically, this chapter covers:

• Using multiple commands on the SOURCE command line.

• Using three special SOURCE subcommands (EX, NAME, and RENAME).

• Executing PRIMOS commands from within the Debugger with the !
command.

• Suspending your Debugging session with the PAUSE command.

• Repeating Debugger commands with the * and AGAIN commands.

Second Edition

DOC4033-193

USING MULTIPLE COMMANDS WITH SCURCE

When you use the SOURCE command, all commands that follow it on the
command line are interpreted to be source EDITOR subcommands. The
commands are separated by semicolons, which are Debugger command
separators:

> SOURCE TOP: PRINT 23

When you want to use other Debugger commands on the same command line
that contains the SOURCE command, enter two consecutive separator
characters:

> SCURCE TOP; PRINT 5;; RESTART

(Chapter 3 discusses the general use of the SOURCE command.)

USING SCURCE SUBCOMMANDS EX, NAME, AND RENAME

Three additional source subcommands that provide special functions in
the Debugger environment are also available:

• EX

• RENAME

The Source EX Subcommand

The source EX subcommand sets the source file and EDITOR line pointer
to correspond to the source line where execution is to resume (the
execution environment pointer) then displays that line. This is
illegal when the execution environment pointer describes the exit from
a program block.

Second Edition

OTHER FEATURES

Suppose execution were suspended with a breakpoint on line 7. The
execution environment pointer would be at line 7. Here is an example
of how the EX subcommand moves the EDITOR line pointer to source line 7
and displays that line in a PL/I-G program:

> BREAKPOINT 7
> RESTART
**** breakpointed at TEST\7
> SOURCE PRINT 5

: PUT SKIP LIST('The integer sum is', Z) ;
h PUT SKIP;
): A = 5.5;

10: B = 4.3;
11: C = A + B;

> SCURCE EX
PUT SKIP LIST('The integer sum is', Z);

The Source NAME Subcommand

The source NAME subcommand allows you to look at the contents of
another file from within the Debugger. The format of the NAME
subcommand is:

The filename is the name of the other file you want to look at. The
-DEFAULT option, abbreviated -DF, brings you back to looking at the
file corresponding to the evaluation environment.

Used by itself, with no argument, the NAME subcommand simply gives you
the current source pathname. For example:

> SOURCE NAME
Source file is "<PRIME>PAUL>TEST.PLlGn, based on evaluation
environment.

In the example shown above, the NAME subcommand tells you that the
current source file is called TEST.PL1G, which is located in the
directory PAUL, within the disk volume PRIME.

Second Edition

DOC4033-193

Suppose you wanted to look at a second file called MULT.PL1G while you
were debugging TEST.PL1G. You could specify MULT with the NAME
subcommand:

> SOURCE PRINT 10
1: TEST : PROCEDURE;
2: DECLARE (X, Y, Z) FIXED BIN(15);
3: DECLARE (A, B, C) FIXED DEC (4, 2) ;
4: X = 5;
5: Y ■ 3;
6: Z = X + Y;
7: PUT SKIP LIST('The integer sum is', Z);
8: PUT SKIP;
9: A = 5.5;

10: B = 4.3;
> SOURCE NAME
Source file is "^RIME^AUL^ST.PLIG", based on evaluation
environment.
> SOURCE NAME MULT.PL1G
> SCURCE NAME
Source file is "MULT.PL1G", user specified.
> SOURCE PRINT 23
.NULL.

1: MULT : PROCEDURE;
2: DECLARE (P, Q, R) FIXED BIN (15);
3: P = 5;
4: Q = 10;
5: R = P * Q;
6: PUT SKIP LIST ('The product is', R);
7: PUT SKIP;
8: END MULT;

BOTTOM
>

Second Edition

OTHER FEATURES

In the example shown above, the current source filename is temporarily
changed from TEST.PL1G to MULT.PL1G. If you want to go back to looking
at TEST.PL1G, issue the NAME -DEFAULT subcommand:

> SOURCE NAME MULT.PL1G
> SOURCE PRINT 23
.NULL.

1: MULT : PROCEDURE;
2: DECLARE (P, Q, R) FIXED BIN(15) ;
3: P = 5;
4: Q = 10;
i: R = P * Q;

6: PUT SKIP LIST ('The product is', R);
7: PUT SKIP;
8: END MULT;

BOTTOM
> SOURCE NAME -DEFAULT
> SCURCE PRINT 10
.NULL.

1: TEST : PROCEDURE;
2: DECLARE (X, Y, Z) FIXED BIN(15);
3: DECLARE (A, B, C) FIXED DEC(4, 2);

X = 5;
: Y = 3;
: Z - X + Y;

': PUT SKIP LIST('The integer sum is', Z);
: PUT SKIP;

A = 5.5;

Use of the source NAME subcommand to look at a second file does
not interfere with the debugging of the first (default) file.

The Debugger selects the file to be operated upon by SCURCE commands
using the following rules:

1. When the Debugger is entered from PRIMDS command level, the
source file is that which contains the main program. The line
pointer is positioned to the first line in the program.

2. When the Debugger is reentered from the user program as a
result of a breakpoint or condition, the source file name is
set to that containing the program block represented fcy the
execution environment pointer. The line number is that of the
breakpointed statement (if a statement breakpoint), first line
in the program block (if an entry to a program block), or next
statement to be executed (if exiting from a program block). It
is set to the statement that caused the condition to be raised
if a condition caused Debugger reentry.

Second Edition

DOC4033-193

3. When you execute an ENVIRCNMENT command, the source file is set
to that which contains the program block described by the new
evaluation environment pointer. The line number is set to the
first line in the program block.

4. When the SOURCE EX command is executed, the source file name is
set to correspond to the execution environment pointer. The
line number is set as described in rule 2, above.

The SOURCE RENAME Subcommand

The source RENAME subcommand resets the default source filename for a
specified program block. In other words, the default source file —
the filename defined in the symbol table — is reset for the rest of
the debugging session until another SOURCE RENAME command is entered.
The format of the RENAME subcommand is:

The filename is the name of the file that you want as your default
source file. The program-block-name is the name of the program block
in which the default source file will be the specified filename. If
you do not specify program-block-name, the program block corresponding
to the current evaluation environment is assumed. If the indicated
program block is the same as the current block, the current source file
is changed to filename.

EXECUTING PRIMDS COMMANDS FRCM DEBUGGER

You can execute certain PRIMOS commands from Debugger command level
using the ! command, which is an exclamation point on your keyboard.
This command is useful if you want to perform PRIMOS operations, such
as attaching to another directory, listing your directory's files, and
checking the time, without leaving the Debugger.

The format of the ! command is:

The primos-command-line is a PRIMDS command that you want to execute
from the Debugger.

Second Edition

OTHER FEATURES

Caution

In order for this, command to work properly you must use
interna] PRIMOS commands, not external commands. (Internal and
external commands are summarized in the PRIMOS Commands
Reference Guide.) Internal commands are part of PRIMDS itself.
External commands are programs that are stored in a special
directory on your system. External commands execute, but they
interfere with the memory image of the Debugger or your
program. Therefore, you could not return to Debugger command
l e v e l .

Here is an example of the I command;

> I ATTACH PAUL>MEMOS
>

In the example shown above, the PRIMDS command ATTACH is executed and
control returns to Debugger command level.

SUSPENDING YOUR DEBUGGER SESSIONS

You can temporarily suspend your Debugging session and return to PRIMOS
command level with the PAUSE command. PAUSE is useful when you have
several PRIMDS commands to enter instead of just one or two. The
format of the PAUSE command, abbreviated PA, is:

Caution

As explained under the Caution in the previous discussion of
the ! command, you must use internal PRIMDS commands with
PAUSE, not external commands. (Internal and external PRIMOS

_ commands with
external PRIMOSPAUSE, not external commands. (Internal and external PRIMOS

commands are summarized in the PRIMDS Commands Reference Guide.
See also the Caution in the previous section.)

Here is an example of the PAUSE command;

> PAUSE
To resume debugging, type 'START'.

OK, ATTACH PAUL>MEMOS
OK, START

Second Edition

DOC4033-193

As shown in the example above, whenever you are ready to return to
Debugger command level, type START. The OK, prompt is the PRIMDS
command prompt.

REPEATING DEBUGGER COMMANDS

Two Debugger commands (* and AGAIN) allow you to repeat the execution
of Debugger commands. The * command, which is an asterisk on your
keyboard, repeats the current command line as many times as you wish.
The AGAIN command repeats the Debugger command most recently executed.
These two commands are discussed in the paragraphs that follow.

The * Command

The * command, which is an asterisk, executes the current command line
for a specific number of times or forever. The format of the * command

The optional value is the number of times you want the command line to
be repeated.

The * command must be the last command on your command line and
separated from the preceding commands by a semicolon (command
separator) .

If you do not supply a value following * on the command line, then that
command line will be executed forever or until an error is encountered
or until you hit the break (CONTROL-P) key. For example, to locate all
occurrences of the character Se in the current source file, enter:

> SOURCE TOP
> SCURCE LOCATE &; *
BOTTOM
>

Second Edition

OTHER FEATURES

If you want to repeat the command line a specific number of times,
specify a value immediately following the * command. For example, to
print the values of A (I) squared, incrementing I from 1 to 10, enter:

> LET 1=0
> LET I = I + 1; : A(I) ** 2.; *10

In the example shown above, note that ** is the operator that squares
A (I) .

The AGAIN Command

The AGAIN command repeats the Debugger command line that has just been
executed. This command is useful if you have to execute the same
command more than once but don't want to type the command over again.
The format of the AGAIN command, abbreviated A, is:

Here is an example of how AGAIN might be used:

> SCURCE LOCATE YEAR
: YEAR - INTEGER;

> AGAIN
7: FUNCTION CALC (M0NTH_IN : MONTH; YEAI_JN : YEAR)

> AGAIN
16 : IF YEAR_ IN MOD 4=0 THEN

>

: DATE;

Note

You must enter the AGAIN command by itself on the command line.

Second Edition

Advanced Macros

INTRODUCTION

This chapter lists some more complex examples of how macros can be used
in your debugging sessions. Each example is accompanied by an
explanation of what function the macro is performing. In future
revisions of this book, more macro examples may be added to this
chapter. (See also Chapter 9 for information on how to create and use
macros.)

As you recall from Chapter 9, all macros are created with the MACRO
command, abbreviated MAC. The contents of macro lists can be displayed
with the MACROLIST command. (The formats of these two commands are
given in Chapter 9.)

Some examples of more complex macros follow:

• To examine 10 source lines at a time without disturbing the
source line pointer:

> MACRO PT [SOURCE BRIEF; NEXT -5; PRINT 10; NEXT -4; VERIFY]

Second Edition

DOC4033-193

To display a particular name and home state of a U.S. President
contained in a PL/I-G linked list structure:

> MACRO PREZ [: ADR(%1%)->PRES(%2%) .NAME; : STATE (ADR(%!%)->'
PRES %2%).SN)]

To save all your macros for future use in a PRIMOS file,
MYMACROS, and leave the Debugger:

> MACRO SSM [SAVESTATE PAUL>DBG>MYMACROS -MACROS; QUIT;

To set a new breakpoint, clear the breakpoint you are suspended
on, and continue execution to your new breakpoint, enter:

> MACRO PR [BREAKPOINT %1%; CLEAR; CONTINUE]

To close a file in any particular directory, enter:

> MACRO CLS [! CLOSE <Prime>%l%>%2%>%3%]

To check the date and the status of the network, enter:

> MACRO DNE [! DATE; I STAT NETWORK]

To be able to look at any RPG source file in any particular
directory, enter:

> MACRO NAM [SOURCE NAME <Prime>%l%>%2%.rpg]

Second Edition

Other
Advanced Features

IDLINE
STATUS
PMODE
VPSD

INTRODUCTION

This chapter describes some Debugger features that, in general, you
might use in more advanced applications. Specifically, this chapter
covers:

• Using DBG command line options when you invoke the Debugger with
the DBG command. These options tell the Debugger to do or not
do certain things during its operations.

• Using the compiler options -DEBUG, -PRODUCTION and -NODEBUG.

• Entering command line arguments with the CMDLINE command.

• Using the Debugger's advanced information request commands
(INFO, SEGMENTS, and STATUS) .

• Setting the print mode with the PMODE command.

• Entering the 64V Mode Prime Symbolic Debugger (VPSD) with the
VPSD command.

Second Edition

DOC4033-193

USING DBG COMMAND LINE OPTIONS

There are several DBG command line options available to you that make
the Debugger do some useful things during its operations. (The DBG
command, which invokes the Debugger from PRIMDS command level, is
discussed in Chapter 3.)

The command line option follows the name of the program file on the DBG
command line. For example:

OK, DBG MYPROG -COMINPUT

Table 13-1 lists the DBG command line options and their functions,

Table 13-1

DBG Command Line Options
(Abbreviations are underlined.)

Option Function

-DDADSTATE pathname -LOADSTATE allows you to restore the
contents of a SAVESTATE file — your saved
breakpoints, tracepoints, and macros —
upon invoking the Debugger. The pathname
is the pathname of the file that you want
to restore.

-\^MFY_5YMB(XS
and

-ND_VERIFY_3YMBCLS

-VERIFY_J3YMB<XS checks all external symbol
declarations for consistency in all program
blocks contained within the executable
file. The Debugger displays a warning
m e s s a g e d u r i n g i n i t i a l i z a t i o n i f i t
encounters external symbol declarations
that differ. -N0_VERIFY_3YMBC_S, which is
the opposite of -VERIFY_SYMBC_S, suppresses
external symbol checking, thereby speeding
up initialization. (~VERIFY_j3YMB(XS is the
de fau l t .)

Second Edition

OTHER ADVANCED FEATURES

Table 13-1 (continued)
DBG Command Line Options

-VERIFY_PROC and
-ND_VERIFY_J?ROC

-COMINPUT and
-ND_COMINPUT

-FULL_INTT and
-QUICK_.IN_T

-VERIFYJPROC specifies that the procedure
text is to be verified to ensure that
statement breakpoints may be set where
applicable. A warning message is displayed
if the Debugger encounters a statement for
which the procedure text is unsuitable for
placing a breakpoint. -NO_VERIFY_J?ROC, the
opposite of _VERIFY_PROC, specifies that
the procedure text is not to be inspected
for improper format regarding placement of
b r e a k p o i n t s . (- V E R I F Y. J ' R O C i s t h e
de fau l t .)

-COMINPUT specifies that the Debugger
accept input from a command input file or
CPL program. -NO_COMINPUT, specifies that
the Debugger accept input only from the
terminal, not from a command input file.
(-ND_OOMINPUT is the default.)

-FULI_IN_T causes the Debugger to read and
process the entire symbol table from the
specified executable file prior to entering
command mode. Normally, information is
read from the symbol table only when
requ i red . Th i s op t i on i s use fu l f o r
obtaining a complete external symbol
mismatch summary at initialization time.
Use of -FULI_.INrr will approximately triple
initialization time. -_UICK_IN_T specifies
that only information required to identify
e a c h b l o c k i s t o b e l o a d e d a t
initialization time. The remainder of the
symbol table is loaded as required during
the debugging session. (-QUICI__INIT is the
de fau l t .)

USING COMPILER OPTIONS

Normally, when you want to use the Source Level Debugger to debug your
program, you specify the -DEBUG option during compilation. There are
two other compiler options that are related to the Debugger
(-PRODUCTION and -NODEBUG) .

Second Edition

DOC4033-193

The -PRODUCTION option, which can be used instead of the -DEBUG option,
also produces code for the Debugger. However, its code is limited and
less powerful than the code generated by -DEBUG. The -NODEBUG option,
which is one of your compiler's default options, causes no Debugger
information to be generated.

When you use the -DEBUG option during compilation, the compiler is said
to be in debug mode. Similarly, when the -PRODUCTION or -NDDEBUG
option is used, the compiler is said to be in production mode or
nodebug mode respectively.

The following paragraphs provide more information on the use of debug,
production, and nodebug modes.

Debug Mode — Produce Full Debugger Information

The debug compilation mode causes the compiler to produce symbol and
statement information for the Debugger.

You may set breakpoints at any statement in, entry to or exit from a
program compiled with the -DEBUG option. You may also reference all
symbols declared within the program.

Programs compiled in debug mode are not optimized. The amount of space
occupied by the procedure text of debug mode programs is 10-20 percent
larger than that occupied by production or nodebug mode programs.
Furthermore, the amount of space occupied by the link frame for each
debug mode program increases two halfwords for each common block
(external static variable) and external entry declared.

Production Mode — Produce Limited Debugger Information

Production mode is the hybrid of debug and nodebug modes. Information
about each program block and symbol is produced by the compiler, but no
statement information is produced.

You may place breakpoints at the entry to and exit from programs, but
may not breakpoint at individual statements. Program locations are
identified by program block name plus numerical offset expressed in
octal. (No statement information is produced fcy the compilers.)

Code produced during a production mode compilation is optimized.
Unlike debug mode, no extra space is used by the procedure text.
However, the amount of space used in the linkage frame increases two
halfwords for each common block (external static variable) and external
entry declared.

Second Edition

OTHER ADVANCED FEATURES

Nodebuq Mode Produce No Debuqqer Information

The nodebug compilation mode causes the compiler to output no symbol
and statement information for later digestion fcy the Debugger.
Programs compiled in this mode will not be recognized by the Debugger,
in that no statement, entry, or exit breakpoints may be set, nor may
any variables be referenced. The only way the Debugger can identify a
program compiled in nodebug mode (in a traceback listing, for example)
is using segment and halfword memory addresses. Programs compiled in
nodebug mode may be optimized by the compiler.

ENTERING COMMAND LINE ARGUMENTS WITH CMDLINE

The CMDLINE command may be used to enter your program's command line
arguments.

The format of the CMDLINE command, abbreviated CL, is:

The command line must be reentered each time the program is restarted.

You should be careful not to enter the PRIMDS command SEG, DBG, or
RESUME following the CMDLINE command. The first argument entered will
be the first read by the user program.

Here is an example of the CMDLINE command:

> CMDLINE
Enter command line:
-FREQ 12 -BRIEF

Here is another example that includes the invocation of the Debugger;

OK, DBG TEST

Dbg revision 1.0 - 19.1 (30-November-1983)

> CMDLINE
Enter command line:
MYFILE

Second Edition

DOC4033-193

USING ADVANCED INFORMATION REQUEST ODMMANDS

In addition to the WHERE command, which tells you the location of the
execution environment pointer, the Debugger has three other commands
that can provide you with useful information. These commands are:

• The INFO command, which displays certain information about a
program block.

• The SEGMENTS command, which displays a list of segments that are
in use.

• The STATUS command, which displays information pertaining to the
status of the debugging environment and debugging operations.

(For information on the WHERE command, see Chapter 5.)

The INFO Command

The INFO command displays information about a program block or
statement.

For a program block, the Debugger displays the following information,
which is explained in the System Architecture Reference Guide
(Rev. 19.2 and higher):

• Procedure base start and end addresses.

• Link base start address, if a procedure was called.

• ECB address, if a procedure was called.

• Most recent invocation's stack frame address, if a procedure was
c a l l e d .

• Starting and ending source line numbers.

• Source filename.

• Mechanism by which the block is invoked — procedure call or
short-call. (Short-calls are possible in Prime Macro Assembler
(PMA) language with the JSXB instruction and in PL/I Subset G
with the OPTIONS SHORT-CALL feature, described in PTU84, PL/I
Subset G, Rev. 19.0.)

• Compilation mode (debug or production).

For a statement, the memory address of the first instruction is
displayed.

Second Edition

OTHER ADVANCED FEATURES

The format of the INFO command is:

The proqram-block-name is the name of the program block about which you
want information. The statement- ident ifier, which is defined in
Chapter 4, is the executable statement about which you want
informat ion.

In the command format, note that a back slash follows the program block
name to distinguish this name from a statement label.

To display the information for a program block named ATNTT, enter:

> INFO ATNTT\
Pb start 4001(0)/1000, pb end 4001(0)/1120,
linkframe start 4002(0)/177404,
ecb 4002(0)/ll, currently no activations.
Start line # 3, end line # 47 in source file <XYZ>DPR>AINIT.FTN.
Block invoked via procedure call mechanism;
compiled in debug mode.

To display the address of the first instruction generated for the
statement on source line number 37 in subroutine OOMPAD, enter:

> INFO COMPAD\37
First instruction at 4001(0)/l061.

The SEGMENTS Command

Using the SEGMENTS command, you can display a list of segments in
memory that are currently in use. (For more information about default
segment use, see the SEG and LOAD Reference Guide, Rev. 19.2.)

The segments are classified fcy usage, as follows:

User procedure text, linkage text, and data

Debugger procedure text

Debugger linkage text, data, and symbol table

Procedure call/return stack

Second Edition

DOC4033-193

The format of the SEGMENTS command, abbreviated SEGS, is

Here is an example of the SEGMENTS command:

> SEGMENTS
User procedure text, linkage text, and data:

4001, 4002.
Debugger procedure text:

2040, 2041, 2042, 2115.
Debugger linkage text, data, and symbol table;

4036, 4037.
Stack:

4037, 4035.

The STATUS Command

Using the STATUS command, you can display the following information
about your current debugging environment:

• Statement, entry/exit, and value trace status (on/off)

• Macro execution status (on/off)

• Action list output on breakpoint (print/suppress)

• Execution environment

• Evaluation environment

• Language of evaluation

• Source filename and how it was derived from evaluation or
execution environment, or explicitly set by the user

The format of the STATUS command is:

Second Edition

OTHER ADVANCED FEATURES

Here is an example of the STATUS command:

> STATUS

t rac ing :
statement
e n t r y / e x i t
value

macro execution
breakpoint action list
execution environment
evaluation environment
evaluation language
source file name

suppress
entry to TEST.SORT
TEST. SORT
PASCAL
<PRIME>PAULXTEST.PASCAL (evaluation env)

SETTING THE PRINT MDDE WITH PMODE

Each user variable has associated with it a print mode, which specifies
the format in which the value of the variable will be printed upon
evaluat ion. Ini t ial ly, the default pr int mode for each variable
corresponds to its declared type. You may override this default in two
ways:

Designate a print mode when using the evaluation
(See Chapter 6.)

command.

• Set the print mode explicitly with the PMODE command, which is
described in the following paragraphs.

Whenever you set a particular print mode for a variable using the PMODE
command, that print mode will be used thereafter during your debugging
session whenever the variable is evaluated, unless it is overridden by
the presence of a print mode modifier in an evaluation command (:).

The format of the PMODE command, abbreviated PM, is:

The print-mode is the print mode you want to specify. It can be one of
the following: ASCII, BIT, DECIMAL, FLOAT, HEX, OCTAL, or DEFAULT.
variable-1, variable-2, etc., are the variables you want evaluated with
print-mode.

Table 13-2 lists the results that are printed for each print mode.

Second Edition

DOC4033-193

Table 13-2
Results of Using Print Modes

Print Mode Result

ASCII Each group of eight bits is printed as an ASCII
character.

BIT Each bit is printed as a binary digit.

DECIMAL Each group of 16 bits is printed as a signed
single-precision decimal number.

FLOAT Each group of 32 bi ts is pr inted as a
single-precision floating point number.

HEX Each group of four bits is printed as a
hexadecimal digit.

OCTAL Each group of 16 bits is printed as an unsigned
octal number.

DEFAULT The print mode is set back to the default mode
corresponding to the declared type of the
var iab le .

Given the variable OPOODE declared as INTEGER*2, the result of an
evaluation would normally be printed in decimal:

> : OPCODE
OPCODE = 2471

To indicate that OPCODE should be printed in octal, enter:

> PMODE OCTAL OPCODE
> : OPCODE
OPOODE = 4647 (o)

The lowercase o in parentheses indicates the print mode is octal.

To return to the default print mode (decimal), enter:

> PMDDE DEFAULT OPODDE

OTHER ADVANCED FEATURES

To set the print modes of the variables OPOODE, ADDR (contained in
block TRANSL), and INFO to bit, enter:

> PMDDE BIT OPCODE, TRANSLNADDR, INFO

If a specified variable is a PL/I-G or Pascal structure, the
print mode of each member of that structure is set to what you
specify.

ENTERING PRIME'S V-MODE SYMBOLIC DEBUGGER

You can enter the 64V mode Prime Symbolic Debugger (VPSD) using the
VPSD command. The 64V mode Prime Symbolic Debugger, commonly known as
VPSD, is a machine-level debugger, which is most helpful to users
familiar with the machine architecture. (For a description of the 64V
mode Prime Symbolic Debugger, see the Assembly Language Programmer's
G u i d e) . - -

The format of the VPSD command, abbreviated PSD, is:

The VPSD base registers and general machine registers are set up to
their values at the time DBG was reentered from the user program.
Although you may modify these registers while within VPSD, the updated
values are not returned to DBG and therefore not placed in the register
set when program execution is continued.

To return to Source Level Debugger command level from VPSD, enter the
QUIT command at the VPSD $ prompt. For example:

> VPSD

$QUTT

Caution

Do not set VPSD breakpoints when you enter VPSD from the
Debugger. Setting these breakpoints while the Debugger is
running could produce unpredictable and undesirable results.

Second Edition

Sample Sessions
with FORTRAN IV

This appendix offers some sample debugging sessions using Prime FORTRAN
IV. Other FORTRAN TV debugging examples are given in Chapter 3 and
throughout the book. (For more information about FORTRAN IV, see the
FORTRAN Reference Guide.)

There are a few things you should keep in mind when using the Debugger
with FORTRAN IV. First, you must use the -64V option along with the
-DEBUG option when compiling your program. For example, suppose you
had a FORTRAN IV program named TEST.FTN. You would enter:

OK, DBG TEST -64V -DEBUG

Another thing to remember is that, instead of a "program
complete" message, your program will receive a "program
(statement-id)" message if a STOP statement is executed or a
exit from (statement-id)" if a program block calls EXIT.

execution
stop at
"program

Exit breakpoints may not be set in FORTRAN IV program blocks that
execute alternate returns; that is, blocks that execute a GOTO
statement to a label value supplied as an argument to that block. The
following Debugger features will not work if an alternate return is
executed: exit breakpoints, exit tracepoints, the OUT command, the
CALL command entry/exit, statement, or value tracing. This restriction
does not apply to GOTOs executed using the PL1$NL subroutine.

Second Edition

DOC4033-193

SAMPLE SESSIONS

In the first debugging session, a program that is supposed to take two
numbers, add them, and display the results, is used. The program
compiles and loads successfully, but when you try to execute it, you
get an incorrect answer:

OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD ADD
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
ENTER AN INTEGER NUMBER FRCM 1 TO 10
3
ENTER AN INTEGER NUMBER FRCM 1 TO 10
5

0

**** STOP

You enter the Debugger and look at the contents of the source program
using the SOURCE command:

OK, DBG ADD

Dbg revision 1.0 - 19.1 (30-November-1983)

FORTRAN IV SESSIONS

After looking at the source code, you set a breakpoint on source line
number 9 to try to locate where the error occurred. After setting the
breakpoint, you use the RESTART command to start execution:

> BREAKPOINT 9
> RESTART

ENTER AN INTEGER NUMBER FROM 1 TO 10
3
ENTER AN INTEGER NUMBER FRCM 1 TO 10
5

**** breakpointed at $MAIN\9 ($7+3)

You set another breakpoint on source line 10 and check the values of I
and J, which were just assigned:

> BREAKPOINT 10
> CONTINUE

**** breakpointed at $MAIN\10 ($7+4)
> : I; : J
1 = 3
J = 5

The values of I and J have been assigned correctly, so you set another
breakpoint, this time at the entry of the subroutine ADD. You delete
the two previous breakpoints and restart program execution:

> BREAKPOINT ADDN
> CLEAR 9
> CLEAR 10
> RESTART

ENTER AN INTEGER NUMBER FRCM 1 TO 10
3
ENTER AN INTEGER NUMBER FROM 1 TO 10
5

**** breakpointed at entry to ADD

At this entry, you use the ARGUMENTS command to see if the values of I
and J were passed to the subroutine correctly:

> ARGUMENTS
1 = 3
J = 5

Second Edition

DOC4033-193

You see that I and J were passed correctly, but, to your amazement,
argument K is not displayed. You wonder what happened to K. Using the
SCURCE command, you look at the argument list at the entry to the
subroutine:

> SOURCE PRINT
15: SUBROUTINE ADD (I,J)

You have now discovered the problem. The argument K is missing from
the argument list. Without this argument, the program does not add I
and J correctly. After supplying the argument in the source program,
you compile, load, and execute the program again:

OK, FTN ADD -64V -DEBUG
0000 ERRORS [<.MAIN.>FTN-REV19.2]
0000 ERRORS [<ADD >FTN-REV19.2]
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD ADD
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
ENTER AN INTEGER NUMBER FRCM 1 TO 10
3
ENTER AN INTEGER NUMBER FROM 1 TO 10
5

8

**** STOP

Sure enough, the numbers add correctly. Notice the **** STOP message
signifying the completion of program execution.

In the next sample Debugger session, the following FORTRAN IV program
is used. Debugger source line numbers are added for convenience:

INTEGER*2 ARRAY(5), TOTAL
DATA ARRAY/10,200,40,55,78/
TOTAL=0
DO 100 J=l,4
TOTAL=TOTAL+ARRAY(J)
I=J
CONTINUE
WRITE (1,200) TOTAL
FORMAT('THE TOTAL OF ARRAY = ',14)
STOP
END

Second Edition

FORTRAN IV SESSIONS

This program is supposed to total the values of all the elements of a
five-element array. You compile and load the program successfully, but
when you execute it, the output is suspicious. The total isn't as
large as you think it is supposed to be:

OK, FTN TOTAL -64V -DEBUG
0000 ERRORS [<.MAIN.>FTN-REVT9.2]
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD TOTAL
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
THE TOTAL OF ARRAY = 305

**** STOP

Because the value 305 looks suspicious, you enter the Debugger;

OK, DBG TOTAL

Dbg revision 1.0 - 19.1 (30-November-1983)

To see if the elements of the array were assigned correctly, you place
a breakpoint on source line number 4 just before the DO loop, restart
program execution, and check the values of the array elements:

> BREAKPOINT 4
> RESTART

**** breakpointed at $MAIN\4
> : ARRAY
ARRAY(1) - 10
ARRAY(2) = 200
ARRAY(3) = 40
ARRAY(4) - 55
ARRAY (5) = 78

Second Edition

DOC4033-193

You see that the values were assigned to the array correctly. Now,
since the program is so small, you decide to use the WATCH command to
trace the changing values of variables J and TOTAL to see where and how
new values are assigned throughout execution. You also place a
breakpoint on source line 8 to suspend execution at the exit of the DO
loop, after all values have been assigned:

> WATCH J, TOTAL
> CLEAR 4
> BREAKPOINT 8
> RESTART
The value of $MA]

from 305
t o 0

The value of $MA:
from 4
t o 1

The value of $MA:
from 0
t o 1 0

The value of $MA:
from 1
t o 2

The value of $MAj
from 10
to 210

The value of $MA:
from 2
t o 3

The value of $MA:
from 210
to 250

The value of $MA:
from 3
t o 4

The value of $MA:
from 250
t o 3 0 5

$MAIN\TOTAL has been changed at $MAIN\4

$MAIN\J has been changed at $MAIN\5

$MAIN\TOTAL has been changed at $MAIN\6

$MAIN\J has been changed at $MAIN\5

$MA:m\TOTAL has been changed at $MAIN\6

$MAINy has been changed at $MAIN\5

$MAIN\TOTAL has been changed at $MAIN\6

$MAIN\J has been changed at $MAIN\5

$MAIN\TOTAL has been changed at $MAIN\6

**** breakpointed at $MAIN\8 ($100+1)

Now you have discovered the problem. The array index value of 5 is
never assigned to J, and the value of ARRAY (5) is never added to TOTAL.
Using the SOURCE command, you look at the DO LOOP index on line 4:

> SCURCE POINT 4
: DO 100 J=l,4

Second Edition

FORTRAN IV SESSIONS

As you had suspected, a 4 was assigned as the maximum iteration instead
of a 5. So you change 4 to 5 in your source program and compile, load,
and execute your program again:

OK, FTN TOTAL -64V -DEBUG
0000 ERRORS [<.MAIN.>FTN-REV19.2]
OK, SEG -LOAD
[SEG REV 19.2]
$ LOAD TOTAL
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
THE TOTAL OF ARRAY = 383

STOP

> QUIT
OK,

Your program now executes correctly.

Second Edition

Sample Sessions
with FORTRAN 77

This appendix offers a sample debugging session with Prime FORTRAN 77.
Other FORTRAN debugging sessions are given in Appendix A, SAMPLE
SESSIONS WITH FORTRAN IV. (For more information on FORTRAN 77, see the
FORTRAN 77 Reference Guide.)

One thing to remember when debugging FORTRAN 77 programs is that,
instead of a "program execution complete" message, you receive a
"program stop at (statement-id)" message if a STOP statement is
executed, or a "program exit from (statement-id)" message if a program
block calls EXIT.

In FORTRAN 77, if execution is suspended at an entry to a program
block, you cannot evaluate adjustable character arguments or adjustable
or assumed-size arrays. If the program is executed up to the first
statement, these values can be evaluated.

Second Edition

DOC4033-193

SAMPLE SESSION

Suppose you have just written a FORTRAN 77 program that calculates an
employee's yearly salary, monthly salary, percentage of a pay raise
over last year's salary, and the percentage of the salary that goes
toward deductions. The program contains one subroutine, RAISE, that
performs these calculations. The program looks like this, with
Debugger source line numbers included for convenience:

1: PROGRAM PAYRAISE
2:
3: KEY
4: A = NEW_GROSS_PAY
5: B - NEW_YEARLY_J>AY
6: C = NEWJflDNTHLYjGROSS
7: D = GLD_GROSS_J?AY
8: E = OLD_NET
9: F = NEW_NET_J?AY

10: G = PERCENT_INCREASE
11: H = FERCENT_DEDUCTIONS
12:
13: PRINT*, 'ENTER YOUR WEEKLY GROSS PAY:
14: READ*, D
15: PRINT*, 'ENTER YOUR WEEKLY NET PAY: '
16: READ*, E
17: PRINT*, 'ENTER YOUR NEW WEEKLY GROSS PAY
18: READ*, A
19: PRINT*, 'ENTER YOUR NEW WEEKLY NET PAY:
20: READ*, F
21: CALL RAISE (A,B,C,D,E,F,G,H)
22: PRINT 10,'YEARLY: $',B
23: PRINT 10,'MDNTHLY: $',C
24: PRINT 20,'INCREASE: ',G,'
25: PRINT 20,'DEDUCTIONS: ',H,'
26: 10 FORMAT (A,F8.2)
27: 20 FORMAT (A, 12, A)
28: STOP
29: END
30:
31: SUBROUTINE RAISE (A,B,C,D,E,F,G,H)
32: B = A*52
33: C = B/12
34: G = (A-D)/TJ*100
35: H = (A-F)/F*10
36: RETURN
37: END

Second Edition

FORTRAN 77 SESSIONS

You compile and load the program successfully, but when it executes,
you see that the percentage of deductions, represented by the variable
H, is quite a bit lower than it should be:

OK, F77 PAYRAISE -DEBUG
[F77 Rev. 19.2]
0000 ERRORS [<PAYRAISE> F77-REV 19.2]
0000 ERRORS [<RAISE> F77-REV 19.2]
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD PAYRAISE
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
ENTER YOUR WEEKLY GROSS PAY:

333.33
ENTER YOUR WEEKLY NET PAY:

266.66
ENTER YOUR NEW WEEKLY GROSS PAY:

399.99
ENTER YOUR NEW WEEKLY NET PAY:

333.33
YEARLY: $20799.48
MONTHLY: $ 1733.29
INCREASE: 20%
DEDUCTIONS: 2%
**** STOP

Yes, something is definitely wrong with the deduction calculation
because you know Uncle Sam takes more than 2 percent of your gross
salary. So you enter the Debugger, place a breakpoint on source line
21, just before the call to subroutine RAISE, and restart program
execution.

Second Edition

DOC4033-193

OK, DBG PAYRAISE

*Dbg** revision 1.0 - 19.1 (30-November-1983)

> BREAKPOINT 21
> RESTART
ENTER YOUR WEEKLY GROSS PAY:

333.33
ENTER YOUR WEEKLY NET PAY:

266.66
ENTER YOUR NEW WEEKLY GROSS PAY:

399.99
ENTER YOUR NEW WEEKLY NET PAY:

333.33

**** breakpointed at PAYRAISE\21
>

You then check the values that were just assigned to variables D, E, A,
and F. Values appear in scientific notation:

**** breakpointed at PAYRA_3E\21
> __D
D = 3.333299E+02
> _JE
E = 2.666599E+02
> j_A
A = 3.999899E+02
> __F
F = 3.333299E+02
>

Seeing that the values were assigned correctly, you step into
subroutine RAISE and check to see if the values were passed correctly:

> STEPIN
**** "in« completion at RAISE\32
> ARGUMENTS
H - -2.869004E+20
G = -1.784781E+24
F = 3.333299E+02
E = 2.666599E+02
D = 3.333299E+02
C = 9.158859E+14
B = 2.074890E+34
A = 3.999899E+02

Second Edition

FORTRAN 77 SESSIONS

You see that the values were passed to the subroutine correctly.
(Variables H and G contain junk because their values have not been
assigned yet.) Now you place a breakpoint on line 36, immediately
after the value of H has been calculated, continue execution to line
36, then check the value of H:

> BREAKPOINT 36
> CONTINUE
**** breakpointed at RAISE\36
> j_H
H = 1.999821E+00
>

Looking at the value of H, you discover that the problem is within the
statement that calculates H because the exponent should be 01 instead
of 00. Using the SOURCE command, you look at line 35, which is the
statement that calculates H:

> SCURCE NEXT -1
35: H = (A-F)/F*10

>

You see that you accidentally multiplied F by 10 instead of 100. To be
absolutely sure, you use the LET command to assign H the new formula
(A-F)/F*100, then check the value of H again:

> LET H = (A-F)/F*100
> __H
H = 1.999820E+01
>

Second Edition

DOC4033-193

Yes, the exponent becomes 01. And now you correct the error in your
source file, compile, load, and execute your program once again:

OK, F77 PAYRAISE -DEBUG
[F77 Rev. 19.2]
0000 ERRORS [<PAYRAISE> F77-REV 19.2]
0000 ERRORS [<RAISE> F77-REV 19.2]
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD PAYRAISE
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
ENTER YOUR WEEKLY GROSS PAY:

333.33
ENTER YOUR WEEKLY NET PAY:

266.66
ENTER YOUR NEW WEEKLY GROSS PAY:

399.99
ENTER YOUR NEW WEEKLY NET PAY:

333.33
YEARLY: $20799.48
MONTHLY: $ 1733.29
INCREASE: 20%
DEDUCTIONS: 20%
**** STOP

Sample Sessions
with Pascal

This appendix offers a sample debugging session with Prime Pascal.
Several other debugging sessions using Pascal programs are given in
Chapter 3 and throughout the book. The Debugger supports Prime's
extensions and restrictions to Pascal, including the new data type
STRING, which was released at Rev. 19.2. (For more information on
Prime Pascal, see the Pascal Reference Guide.)

Consider the following Pascal program named CALENDAR,
line numbers are added for convenience:

Debugger source

PROGRAM CALENDAR;
TYPE

MONTH = (JANUARY, FEBFUARY, MARCH, APRIL, MAY, JUNE,
JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER);

YEAR = INTEGER;
DATE = 28..31;

FUNCTION DAYS_IN_MDNTH (MDNTH_IN : MONTH; YEAI__IN : YEAR) : DATE;
BEGIN {function DAYS_IN_MONrH}

CASE MDNTH_IN OF
JANUARY, MARCH, MAY, JULY, AUGUST, OCTOBER, DECEMBER:

DAYS_INJMONrH := 31;
APRIL, JUNE, SEPTEMBER, NO/EMBER:

DAYS_IN_MONTH := 30;
FEBHJARY:

IF YEAR_IN DIV 4 = 0 THEN
DAYS_IN_MONrH := 29

ELSE
DAYS__N_MDNTH := 28

Second Edition

DOC4033-193

1 9 : E N D ;
20: END; {function DAYS_IM_MONrH}
21: BEGIN {main program}
22: WRTTELN (DAYS_IN_MONTH (FEBHJARY, 1984) ,
23: END.

DAYS HATH FEBHJARY.')

This program is supposed to output the correct number of days in any
given month, in any given year. It has one function, DAYS_HOONTH,
which, after being passed a month and year, calculates the number of
days in the given month. You compile the program with the -DEBUG
option and load it successfully:

OK, PASCAL CALENDAR -DEBUG
[PASCAL Rev. 19.2]
0000 ERRORS (PASCAL-REV 19.2)
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD CALENDAR
$ LIBRARY PASLIB
$ LIBRARY
LOAD COMPLETE
$ QUIT
OK,

You execute the program, knowing that the supplied month and year,
FEBRUARY 1984, has 29 days because 1984 is a leap year:

OK, SEG CALENDAR
28 DAYS HATH FEBHJARY.

OK,

Looking at your output, you discover that it is wrong — 28 days
instead of 29. So you place two breakpoints at potential problem
areas, the entry to DAYS_JN_MONTH and the executable statement that
handles FEBHJARY within the CASE structure:

OK, DBG CALENDAR

Dbg revision 1.0 - 19.1 (16-June-1983)

> BREAKPOINT DAYS_IN-MDNrH\\ENTRY
> BREAKPOINT 15
CAI_^NDAR.DAYS_IN_MDNrH\15 assumed.
>

Second Edition

PASCAL SESSIONS

In the example above, the Debugger assumes the DAYS_IN_MONrH
evaluation environment when you specify the second breakpoint.
As of this software release, you do not need to specify the
names of procedures or functions as long as they are declared
within the current evaluation environment.

You activate execution using RESTART, and execution suspends at the
entry to the DAYS_IN_MONTH function:

> RESTART
**** breakpointed at entry to CAI_M_\R.DAYS_II_K>NrH
>

At the entry to the function, you want to make sure the arguments
MONTH_IN and YEAR_IN were passed correctly, so you use the ARGUMENTS
command:

> ARGUMENTS
M0NTH_IN = FEBHJARY
YEAR_IN = 1984
>

Seeing that the arguments were passed correctly, you continue execution
until the breakpoint at the IF-THEN-ELSE statement, which calculates
the number of days in FEBHJARY:

> CONTINUE

**** breakpointed at (_U£NDAR.DAYS_IN_MDNrH\15
>

You use the evaluation command to check the result of the expression
YEAR_IN DIV 4:

> : YEAR_IN DIV 4
496
>

Second Edition

DOC4033-193

To your surprise, you see that the value of YEAR_IN DIV 4 is nowhere
near 0, and you realize you used the wrong arithmetic operator to
calculate the leap year. What you really wanted was the MOD operator
to yield a remainder of 0. So after changing DIV to MOD in the source
program, you compile, load, and execute your program over again:

OK, PASCAL CALENDAR -DEBUG
[PASCAL Rev. 19.2]
0000 ERRORS (PASCAL-REV 19.2)
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD CALENDAR
$ LIBRARY PASLIB
$ LIBRARY
LOAD COMPLETE
$ EXECUTE

29 DAYS HATH FEBHJARY.
OK,

The output is now correct, and FEBHJARY 1984 hath 29 days after all,

Second Edition

Sample Sessions
with PL/I Subset G

This appendix offers a sample debugging session with a Prime PL/I
Subset G program. Other debugging examples with PL/I-G are used
throughout the book. (For more information about PL/I-G, see the PL/I
Subset G Reference Guide.)

include the keywords OPTIONS (MAIN) to designate the main procedure.
The term OPTIONS (MAIN), which is not necessary in Prime PL/I-G, may
generate an error during your debugging session. It is better just to
enter the comment /*options main*/ if you want to flag the main
procedure.

SAMPLE SESSION

Consider the following PL/I Subset G program,
numbers have been added for convenience.

Debugger source line

1: CALC : PROCEDURE; /*options main*/
2: DCL NUM FIXED BIN (15) ;
3: PUT SKIP LIST ('Enter 0 to end program');
4: PUT SKIP;
5: PUT LIST ('Enter a whole number: ');
6: GET SKIP LIST (NUM);
7: DO WHILE (NUM "= 0) ;
8: IF MOD(NUM, 2) "= 0 THEN
9: PUT SKIP LIST("This is an odd number');

Second Edition

DOC4033-193

10: ELSE
11: CALL CUBE_IT (NUM) ;
12: END; /*do-while*/
13: CUBE__T : PROCEDURE(N) ;
14: DCL (N, NSQR, NCUB) FIXED BIN (15);
15: NSQR = N ** N;
16: NCUB = N * NSQR;
17: PUT SKIP LIST(N, NSQR, NCUB);
18: END CUBE_TT;
19: END CALC;

This program is supposed to read a whole number, which you enter at the
terminal, and determine if the number is odd or even. If the number is
odd, a message saying it is odd is displayed, and you are prompted for
another number. If the number is even, a procedure CUBE__T is called,
and the value of the even number, its square, and its cube are
displayed. You are then prompted for another number. The program is
designed to terminate when you enter a 0.

Your program compiles and loads without error, but when you execute it,
a couple of horrible things happen:

OK, PL1G CUBE -DEBUG
[PL1G Rev. 19. 2]
0000 ERRORS (PL1G-REV 19.2)
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD CUBE
$ LIBRARY PL1GIB
$ LIBRARY
LOAD COMPLETE
$ EXECUTE

Enter 0 to end program
Enter a whole number: 4_

4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024
4 256 1024

This goes on forever.

Second Edition

PL/I SUBSET G SESSIONS

You had entered a 4, hoping to see its square, 16, and its cube, 64.
Instead, you get back two very large numbers that come back at you over
and over again in an infinite loop.

First, you would like to know why those large values were assigned to
NSQR and NCUB. You enter the Debugger and place breakpoints at the
entry to CUBE__T and source line 16, where NSQR is calculated. Then
you restart the program, suspend at the entry, and see if the value of
N was passed to CUBE__T correctly:

OK, DBG CUBE

Dbg revision 1.0 - 19.1 (30-November-1983)
> BREAKPOINT CUBE_TT\\^NTRY
> BREAKPOINT 16
CALC.CUBE_IT\16 assumed.
> RESTART

Enter 0 to end program
Enter a whole number:

**** breakpointed at entry to CALC.CUBE__T
> : NUM
NUM = 4
>

In the example above, notice how the Debugger assumes the
CUBE_rr evaluation environment when you specify the second
breakpoint. As of this software release, you do not need to
specify the name of a procedure as long as it is declared
within the current evaluation environment.

Seeing that the value was passed correctly, you continue program
execution to line 16 and check the values of N and NSQR:

> CONTINUE

**** breakpointed at CALC.CUBE_IT\16
> : 4; : NSQR

NSQR = 256
>

Second Edition

DOC4033-193

The value of N is still correct, but the value of NSQR is not.
Something is wrong with the calculation of NSQR. You look at the
source line on which the calculation is made and perform the
calculation again, using the LET command:

> : N
N = 4
> LET N = N ** N
> : N
N = 256
>

Suddenly you realize that you used the wrong operator. You
accidentally used an exponent of 4 instead of simply multiplying 4
times 4. To be sure, you evaluate the expression 4*4:

One problem has been solved. Now you want to find out why your program
dives into an infinite loop. You expect the problem is within the
DO-WHILE structure. You use the SOURCE command to examine the source
code in the DO-WHILE. Then you break at entry of the loop and check
the value of NUM:

> SOURCE POINT 6
GET SKIP LIST (NUM);

> SOURCE PRINT 7
6: GET SKIP LIST (NUM);
7: DO WHILE (NUM "= 0) ;
8: IF MOD (NUM, 2) "= 0 THEN
9: PUT SKIP LIST ("This is an odd number');

1 0 : E L S E
11: CALL CUBE_TT (NUM);
12: END; /*db-while*/

> BREAKPOINT 8
> RESTART

Enter 0 to end program
Enter a whole number:

**** breakpointed at CALC\8
> : NUM
NUM = 4
>

Second Edition

PL/I SUBSET G SESSIONS

After seeing that the value of NUM has entered the loop correctly, you
decide to single step through the loop and the first call to CUBE__T,
checking the value of NUM as you go. You create two macros that
accomplish this, then single step into the procedure CUBE__T:

> MACRO SP [STEP; : NUM; SOURCE PRINT]
> MACRO SIN [STEPIN; : NUM; SOURCE PRINT'

**** "step" completion at CALC\10
NUM = 4

1 0 : E L S E
> SIN

**** "in" completion at CALC.CUBE_TT\15
NUM = 4

15: NSQR = N * N;
>

Everything is executing nicely so far. Using the OUT command, you
leave the CUBE_TT procedure and go back to the DO-WHILE loop. You then
resume single stepping to finish one full cycle of the DO-WHILE loop:

> OUT

**** "out" completion at exit from CALC.CUBE_rr into CALC\12
> SP
**** "step" completion at CALC\12
NUM = 4

12: END; /*db-while*/
> SP
**** breakpointed at CALC\8
NUM = 4

8: IF MOD (NUM, 2) ~= 0 THEN
>

But of course. You see that you never allowed the program to get a new
value for NUM inside the DO-WHILE loop. That is why the value of NUM
remains 4 at the beginning of the second execution of the DO-WHILE.
You add two lines of code at the bottom of the loop:

PUT SKIP LIST ('Enter a whole number: ');
GET SKIP LIST (NUM);

Second Edition

DOC4033-193

You recompile and reload the program successfully, then execute it once
again:

OK, SEG CUBE

Sample Sessions
with COBOL 74

This appendix offers sample debugging sessions with Prime COBOL 74.
The first section discusses some special considerations that you should
know about when using the Debugger with OOBCL 74 programs. (For more
information about COBOL 74, see the COBOL 74 Reference Guide.)

SIECIAL CONSIDERATIONS

s in COBOL 74

When using the Debugger with COBOL 74, you should understand the
correspondence of data type names between the two. In other words, the
name given to a COBOL 74 data type by the Debugger may differ from the
official data type name defined by the language. The following table
lists COBOL 74 data type names with their corresponding Debugger names.

Second Edition

DOC4033-193

COBOL 74

ALPHANUMERIC DISPLAY
(PIC X)

NUMERIC DISPLAY
(PIC 9)

COMPUTATIONAL

COMPUTATIONAL-1
(real)

COMPUTATIONAL-2
(double precision real)

COMPUTATIONAL-3
(packed decimal)

Debu«

alphanumeric

trailing overpunch

binary-1

computational-1

computational-2

computational-3

Some data types known to the Debugger do not exist in COBOL. Thus,
some of the built-in functions listed in Chapter 6 cannot be used to
evaluate expressions. These functions are built-in Pascal, PL/I-G, and
FORTRAN functions, which are known to the Debugger. (Chapter 6 does
not list the data type required by each function, so you will need the
Pascal Reference Guide, the PL/I Subset G Reference Guide, the FORTRAN
77 Reference Guide and the FORTRAN Reference Guide to find out if each
function can be used with COBOL 74.

Breakpoints in COBOL 74

Breakpoints and tracepoints may be set on paragraph headings in COBOL,
with the format BREAKPOINT CALLER\MAIN-PARAGRAPH. If a paragraph
heading begins with a number, you must add a dollar sign ($) before the
heading so that the Debugger does not mistake the paragraph heading for
a line number. Thus, if a paragraph-name is 020-BEGIN, you would
breakpoint it with the following:

> BREAKPOINT CALLER\$020-BEGIN.

A paragraph heading is also referred to as a "label" throughout this
book. (See Chapter 4 for definitions of labels.)

Second Edition

COBOL 74 SESSIONS

Program Blocks

COBOL does not support procedures as they are known to Pascal and
PL/I-O. However, any called program acts like a procedure. In this
book, any program, procedure, function, subroutine, or other program
unit is generically defined as a program block. (See Chapter 4 for a
definition of "program block" in the context of COBCL 74.)

Data Initialization on Restarts

Data variables that are initialized in the WORKING-STORAGE section of a
COBCL program are not reinitialized when the program is rerun with
RESTART. Thus, to test whether a variable is being changed correctly,
you may need to use the Debugger's LET command to reinitialize some
data elements before restarting.

Record Element Names

A l t h o u g h t h e D e b u g g e r l i s t s r e c o r d e l e m e n t s i n t h e f o r m
NAME 1.NAME2.NAME3, if the language is defined as COBOL, you must
nevertheless enter these elements in the COBOL format, as NAME1 OF
NAME2 OF NAME3.

SESSION CNE — EXPLORING WITH THE DEBUGGER

In the first example, there are no apparent bugs. The program fills a
record (REC) with data, moves it to an output buffer (DISP-REC), and
displays it on the terminal. Here is the COBOL 74 program.

Second Edition

DOC4033-193

OK, SLIST EX1.CBL
IDENTIFICATION DIVISION.
PROGRAM-ID. ADDRESS.
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
CBJECT-COMPUTER. PRIME.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 REC.

05 NAME.
10 LAST-NAME PIC X(20).
10 FIRST-NAME PIC X(10).
10 MIDDLE-INIT PIC X.

05 ADDR.
10 STREET PIC X(25).
10 CITY PIC X(20).
10 STATE PIC X(2).
10 ZIP PIC X(5).

01 DISP-REC.
05 LINE1.

10 FIRST-NAME PIC X(10) .
10 FILLER PIC X VALUE ' '.
10 MIDDLE-INIT PIC X.
10 FILLER PIC XX VALUE '. '.
10 LAST-NAME PIC X(20) .

05 LINE2.
10 STREET PIC X(25).

05 LINE3.
10 CITY PIC X(20).
10 FILLER PIC XX VALUE *, ' .
10 STATE PIC X(2).
10 FILLER PIC XX VALUE ' '.
10 ZIP PIC X(5).

PROCEDURE DIVISION.
CREATE-TEST-RECORD.

MDVE 'HARPER' TO LAST-NAME OF REC.
MOVE 'JAMES' TO FIRST-NAME OF REC.
MOVE 'R' TO MIDDLE-INIT OF REC.
MOVE '25 MAIN ST.' TO STREET OF REC.
MOVE 'ANYTOWN' TO CITY OF REC.
MOVE 'MA* TO STATE OF REC.
MOVE '12345' TO ZIP OF REC.

SET-UP-OUTPUT.
MDVE CORRESPONDING NAME TO LINE1.
MDVE STREET OF ADDR TO STREET OF LINE2
MDVE CITY OF ADDR TO CITY OF LINE3.
MDVE STATE OF ADDR TO STATE OF LINE3.
MOVE ZIP OF ADDR TO ZIP OF LINE3.

DISPLAY-OUTPUT.
DISPLAY LINE1.
DISPLAY LINE2.
DISPLAY LINE3.

Second Edition

COBOL 74 SESSIONS

Now you compile and load the program with the -DEBUG option:

OK, CBL EX1 -DEBUG

[CBL rev 19.2]
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD EX1
$ LIBRARY CBLLIB
$ LIBRARY
LOAD COMPLETE
$ QUIT

Then you enter the Debugger and use the SOJRCE command to examine the
code and decide where to put breakpoints so that data can be examined
before and after the MOVE statements. You then use RESTART to run the
program:

OK, DBG EX1

Dbg revision 1.0 - 19.1 (30-November-1983)

> SOURCE LOCATE PROCEDURE
PROCEDURE DIVISION.

> SOURCE PRINT 23

MOVE
MOVE

PROCEDURE DIVISION.
CREATE-TEST-RECORD.

MOVE 'HAREER' TO LAST-NAME OF REC.
MOVE 'JAMES' TO FIRST-NAME OF REC.
MOVE 'R' TO MIDDLE-INTT OF REC.
MOVE '25 MAIN 31.' TO STREET OF REC.
MDVE 'ANYTOWN' TO CITY OF REC.
MOVE 'MA' TO STATE OF REC.
MDVE '12345' TO ZIP OF REC.

SET-UP-OUTPUT.
MOVE CORRESPONDING NAME TO LINE1.
MOVE STREET OF ADDR TO STREET OF LINE 2.
MOVE CITY OF ADDR TO CITY OF LINE3.
MOVE STATE OF ADDR TO STATE OF LINE3.
MOVE ZIP OF ADDR TO ZIP OF LINE3.

DISPLAY-OUTPUT.
DISPLAY LINE1.
DISPLAY LINE2.
DISPLAY LINE3.5 2 : D I S P I . A Y L

BOTTOM
> BREAKPOINT 36
> BREAKPOINT DISPIAY-OUTPUT
> RESTART

**** breakpointed at ADDRESS\36 (CREATE-^TEST-REGORD+l)

Second Edition

DOC4033-193

Now you use the evaluation command to examine all of the REC record
s t ruc tu re :

> : REC
REC.NAME.LAST-NAME = "
REC.NAME.FIRST-NAME = "
REC.NAME.MIDDLE-TNTT = "
REC.ADDR.STREET = ''
REC.ADDR.CTTY = ''
REC.ADDR.STATE = "
REC.ADDR.ZIP = "
> CONTINUE

**** breakpointed at ADDRESS\50 (DISPLAY-OUTPUT+1)
> : REC
REC. NAME. LAST-NAM3 = 'HARPER '
REC.NAME.FIRST-NAME = 'JAMES '
REC.NAME.MIDDLE-_NTT = fR'
REC.ADDR.STREET = '25 MAIN ST. '
REC.ADDR.CTTY = 'ANYTOWN '
REC.ADDR.STATE = 'MA*
REC.ADDR.ZIP = '12345'
> CONTINUE

Finally the program displays the information on the screen,
expected, and terminates normally:

JAMES R. HARPER
25 MAIN ST.
A N Y T O W N , M A 1 2 3 4 5

**** Program execution complete.

Second Edition

COBOL 74 SESSIONS

But now you rerun the program, test the data name REC before
information is moved there, and find that it has not been reinitialized
to blanks:

> RESTART

**** breakpointed at ADDRESS\36 (CREATE-TEST-RECORD+1)
> : REC
REC. NAME. LAST-NAME = 'HARPER '
REC.NAME.FIRST-NAME = 'JAMES '
REC. NAME. MIDDLE-INIT = 'R'
R E C . A D D R . S T R E E T = ' 2 5 M A I N 3 T. '
R E C . A D D R . C T T Y = ' A N Y T O W N '
REC.ADDR.STATE = 'MA'
REC.ADDR.ZIP = '12345'

So you reinitialize some of the data:

> LET LAST-NAME OF NAME OF REC = '
> LET ZIP OF ADDR OF REC = '00000'
> CONTINUE

Now the two data items in question have been reinitialized correctly:

**** breakpointed at ADDRESS\36 (CREATE-TEST-REOORD+1)
> : REC
R E C . N A M E . L A S T - N A M E = ' '
REC.NAME.FIRST-NAME = 'JAMES '
REC. NAME. MIDDLE-INTT = 'R'
R E C . A D D R . S T R E E T = ' 2 5 M A I N S T. '
R E C . A D D R . C T T Y = ' A N Y T O W N '
REC.ADDR.STATE = 'MA'
REC.ADDR.ZIP = '00000'
> QUIT

Second Edition

DOC4033-193

SESSION TWO — THINGS GET WORSE

The next session handles two programs, one of them calling the other.
CALLER passes a structure (Al) to CALLED. CALLED, to which the
structure is known as ARGl, puts values in it and passes control back
to CALLER, which displays the values in the structure. The combination
has a couple of bugs:

OK, SLIST CALLER.CBL
IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER.

*
DATA DIVISION.

*
WORKING-STORAGE SECTION.
01 Al.

02 A2
02 A3
02 A4.

03 A5
03 A6

02 A7
77 ACCEPTED-CALLS
77 WORK-CALLS
77 NUM-OF-CALLS

COMP PIC S999 VALUE 0.
PIC XX VALUE 'A3 ».

PIC XX VALUE 'A5'.
PIC S9(4) VALUE 0.
PIC XX VALUE 'A7'.
PIC X(5).
PIC X(5) JUSTIFIED RIGHT.
PIC S9(5).

PROCEDURE DIVISION.
001-BEGIN.

EXHIBIT A3.
DISPLAY 'ENTER THE NUMBER OF CALIS DESIRED: *
ACCEPT ACCEPTED-CALLS.
UNSTRING ACCEPTED-CALIFS DELIMITED BY SPACE INTO WORK-CALLS,
MOVE WORK-CALLS TO NUM-OF-CALLS.
F_RFORM 002-CALIED NUM-OF-CALLS TIMES.
EXHIBIT A2.
EXHIBIT A3.
EXHIBIT A6.
DISPLAY 'END OF RUN' .
STOP RUN.

002-CALLED.
CALL 'CALLED' USING Al.

Second Edition

COBOL 74 SESSIONS

OK, SLIST CALLED.CBL
IDENTIFICATION DIVISION.
PROGRAM-ID. CALLED.

DATA DIVISION.

LINKAGE SECTION.
01 ARGl.

02 Bl COMP PIC S999.
02 B2 PIC XX.
02 B3.

03 B4 PIC XX.
03 B5 PIC S9(4) .

02 B6 PIC XX.

PROCEDURE DIVISION USING ARGl.
ADD 1 TO Bl.
MDVE 'B2' TO B2.
MOVE 'B4' TO B4.
ADD 99999 TO B5.
MOVE 'B6' TO B6.
GOBACK.

You invoke the Debugger and run the program with RESTART;

OK, DBG CALIPER

Dbg revision 1.0 - 19.1 (30-November-1983)

> RESTART
A3 = A3
ENTER THE NUMBER OF CALIS DESIRED:
3
A2 =
A3 = B2
A6 = 9997
END OF RUN

EXIT. Program exit from CALLER\30.

Second Edition

DOC4033-193

As soon as the program displays the final values, you realize that A3,
instead of displaying the value B3, displayed the value B2, and A6,
which should have a value that is a multiple of 99999, displays another
value. So, you set all values in the structure back to the original
WORKING-STORAGE values in CALLER and set three breakpoints: one in
CALLER before control passes to CALLED, one in CALLER after control
returns, and one in CALLED after CALLED sets values:

> LET A2 - 0
> LET A3 = 'A3'
> LET A6 = 0
> BREAKPOINT 25
> BREAKPOINT 29
> BREAKPOINT CALLED\20
> RESTART
A3 = A3
ENTER THE NUMBER OF CALLS DESIRED:
3

**** breakpointed at CALLER\25

You evaluate the structure and see that the reinitialized values (A2,
A3, A6) are as expected before the call:

> : Al
A1.A2 = 0
A1.A3 = 'A3'
A1.A4.A5 = 'B4'
A1.A4.A6 = 0
A1.A7 = 'B6'
> CONTINUE

Then you let three calls be made to CALLED:

**** breakpointed at CALLED\20
> CONTINUE

**** breakpointed at CALLED\20
> CONTINUE

**** breakpointed at CALLED\20

Second Edition

COBCL 74 SESSIONS

After the third call, you evaluate the data while control is still with
the called program:

> : ARGl
ARG1.B1 = 3
ARG1.B2 = ' '
ARG1.B3.B4 = "
ARG1.B3.B5 = 0
ARG1.B6 = "

The evaluation command shows that the elements of ARGl are not parallel
to the elements of Al in the calling program. You intended a
correspondence between A2 and B2.

It becomes evident also that argument B5 never changes with ADDs. You
check whether the declaration of B5 allows successive additions of so
large a number:

> TYPE A6
trailing overpunch (4)

The item A6 only allows four digits or a maximum value of 9999. Thus,
even one addition of 99999 in CALLED causes the value to overflow.
This confirms that A6, which corresponds to B5, cannot be used for
repeated additions of the number. These items should be defined as
much larger than PIC 9(4).

Second Edition

Sample Sessions
with RPG II

This appendix offers a sample debugging session with Prime RPG II and
special considerations to know about when using the Debugger with RPG.
(For more information on RPG II, see the RPG II V-mode Compiler
Reference Guide.)

SPECIAL CONSIDERATIONS

Using Breakpoints with RPG

In RPG programs, you may set breakpoints only on calculation
statements. Breakpoints cannot be set on any other type of statements
because, unlike calculation statements, other statements are not
executable.

Second Edition

DOC4033-193

Using SOURCE with RPG

When you use the SOURCE command to examine the contents of your source
RPG program or output file, be aware that source line numbers are added
to the beginning of each line. If your source program or output file
is set up for 80 columns, some lines could wrap around to the next line
when they are displayed at your terminal.

Evaluating Variables in RPG

When evaluating variables in RPG, you should understand that the names
given to RPG variable types by the Debugger differ from the official
type names defined by the language. The following table lists RPG
variable type names with their corresponding Debugger data type names:

RPG Variable Debugger Data

F i e l d

Data Structure

Array

Table

Table Index

Ind ica to r

alphanumeric or trailing overpunch

alphanumeric

alphanumeric or trailing overpunch

alphanumeric or trailing overpunch

binary-1 (15)

binary-1 (15) external

Arrays and tables are one dimensional arrays and are referenced as
described in Chapter 6. Each table within RPG has an internal index
that references the currently selected element of the table. The
internal index is referenced fcy the name IX$yyy, where yyy are the last
characters of the table TAByyy. For example, IX$ABC contains the
current index of table TABABC. You may change this internal index with
the LET command. Note that the internal index should only contain
integers within the index range of the table.

RPG indicators can be referenced fcy the name IND$xx, where xx is any
legal RPG indicator. For example, IND$L3 is a reference for the L3
indicator. The value for an indicator is always 0 or 1.

Second Edition

RPG SESSIONS

Using RESTART with RPG

If you have suspended execution in the calculation part of your
program, and you have specified CONSOLE as the input device, then you
may use RESTART to rerun execution — you supply the input as your
program executes. However, if you specify DISK as the input device,
you cannot use RESTART to rerun the program unless you close the disk
file from which your program is reading data. To accomplish this,
enter the Debugger's ! command followed by the PRIMDS command CLOSE
with the name of the file. Then you can enter RESTART. For example:

> 1 CLOSE INPUT
> RESTART

Examining the Input or Output File
If you have specified DISK as the input device and DISK or PRINTER as
the output device, and want to examine either file while program
execution is suspended, enter the Debugger's I command followed by the
PRIMOS command CLOSE with the name of the file. Then use the SOURCE
NAME command to view the file:

> ! CLOSE filename
> SOURCE NAME filename

The filename is the name of the input or output file you want to
examine. Be aware that if you examine your input or output file in
this manner, your file will be closed, and you cannot continue program
execution without a RESTART, which will open the file once again.

Second Edition

DOC4033-193

SAMPLE SESSION WITH RPG

Consider the following RPG program. Debugger source line numbers have
been added for convenience:

1: p*
2: FINFO IP 80 DISK
3: FREPORT 80 PRINTER
4: IINFO AA 01
5: 50NUMBER
6: 22 NAME
7: 23 252RATE
8: 26 280HOURS
9: 01 HOURS COMP 40 102020

10: 20 RATE MULT HOURS PAY 62
11: 10 EXSR SUBHJ
12: 20 PAY ADD TOTPAY 62
13: 10 PAY ADD BONUS TOTPAY 62
14: CSR SUBFU BEGSR
15: CSR RATE MULT 40 PAY 62
16: CSR RATE MULT 5 OTRATE 42
17:
18:

CSR
CSR

OTRATE
HOURS

! ADD
SUB

RATE
40

OTWAGE 52
20OTHRS

19: CSR OTWAGE! MULT OTHRS BONUS 52
20: CSR ENDSR
21: OREPORT 201 IP
22:
23:
24:

UDATE Y
38
47

SLY''WEE!
'EARNINGS'

25: IP
26:
27: 18

•NUMBER*
'NAME'

28: 34 •RATE'
29: 41 'HOURS'
30: 52 'OT :PAY'
31: 65 'TOTAL PAY'
32: 01
33: NUMBER
34: NAME 27
35: RATE 1 34
36: HOURS 1 40
37: BONUS IB 52 •$«
38: TOTPAY1B 64 ' $ '

Second Edition

RPG SESSIONS

This program calculates an employee's weekly pay and uses a subroutine
to calculate overtime earnings. This program compiles and loads
c o r r e c t l y :

OK, VRPG OVERTIME -DEBUG

0000 ERRORS (VRPG
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD OVERTIME
$ LIBRARY VRPGLB
$ LIBRARY
JjQAD COMPLETE
$ QUIT
OK,

- REV 19.2)

This program reads data from a disk file named INFO and sends output to
a disk file named REPORT. You execute the program then look at the
contents of the output contained in the file REPORT:

OK, SEG OVERTOP
OK, SLIST REPORT

11/05/83 WEEKLY EARNINGS

NUMBER NAME RATE HOURS OT PAY TOTAL PAY

49800 Mixon, Richard 4.50 43 $81.00 $261.00
59080 Young, Lance 5.00 45 $150.00 $350.00
59990 Kramer, Dave 3.67 44 $88.08 $234.88
67090 Singer, Alfie 2.99 42 $35.88 $155.48
77770 Baggins, Moe 6.75 45 $202.50 $472.50

OK,

After seeing the output you know that something is wrong. If someone
works more than 40 hours, he or she is paid time and a half for those
extra hours. Somehow the program is not calculating the overtime pay
correctly because it is much more than you would expect it to be. You
enter the Debugger and decide to place a breakpoint on the first
calculation statement, line 9, then examine the variables RATE and
HCURS to see if they are being read properly during the input cycle.

Second Edition

DOC4033-193

OK, DBG OVERTIME

Dbg revision 1.0
> BREAKPOINT 9
> RESTART

19.1 (30-November-1983)

**** breakpointed at RPG$MAIN\9
> : HOURS
HOURS = 43
> : RATE
RATE = 4.50

Now that you know the variables are being read in properly, you suspect
the problem is located within the subroutine. You want to find out why
the first employee, Richard Mixon, was given a whopping $81 in overtime
pay. You place a breakpoint on line 19 to check the value of OTWAGE,
which is the employee's overtime wage at time and a half:

> BREAKPOINT 19

**** breakpointed at RPG$MAIN.SUBHJ\19
> : OTWAGE
OTWAGE = 27.00

To your amazement, you find out Mr. Mixon is making $27 an hour on
time and a half, but he makes only $4.50 per hour in regular wages.
You know that something is wrong with the formula that calculated
OTWAGE. Using the SOURCE command, you start examining the subroutine's
calculation statements, one at a time:

> SOURCE POINT 15
1 5 : C S R IULT 40

You see there is nothing wrong with line 15, so you examine line 16:

> SOURCE NEXT
1 6 : C S R MULT 5 OTRATE 42

Second Edition

RPG SESSIONS

There's the problem. The regular hourly rate is being multiplied by 5
and should be multiplied by 0.5. You correct the source file then
compile, load, and execute the program again:

OK, VRPG OVERTIME -DEBUG

0000 ERRORS (VRPG
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD OVERTIME
$ LIBRARY VRPGIB
$ LIBRARY
LOAD COMPLETE
$ EXECUTE
OK, SLIST REPORT

- REV 19.2)

11/05/83 WEEKLY EARNINGS

NUMBER NAME RATE HOURS OT PAY TOTAL PAY

49800 Mixon, Richard 4.50 43 $20.25 $200.25
59080 Young, Lance 5.00 45 $37.50 $237.50
59990 Kramer, Dave 3.67 44 $22.00 $168.80
67090 Singer, Alfie 2.99 42 $8.96 $128.56
77770 Baggins, Moe 6.75 45 $50.60 $320.60

OK,

Second Edition

Sample Sessions
withC

This appendix offers special considerations specific to Prime C and a
sample debugging session with Prime C. (For more information on Prime
C, see the C User's Guide.)

SPECIAL CONSIDERATIONS

When the Debugger's evaluation command (:) is used with the special C
assignment operators (=, +=, -=, *=, /=, %=, »=, «=, &=, *=, |=),
assignment is implicitly performed. This means that expressions are
evaluated in the Debugger in exactly the same way they are evaluated in
C programs. Ordinarily, the Debugger's LET command must be used to
assign values. For example, if X equals 1 the evaluation command can
be used with the += operator this way:

> : x += 2
X = 3

In the example above, the value of 3 is assigned to X.

Attempts to assign a value to an rvalue (for example, an expression
enclosed within parentheses) will not cause an error and will appear to
be successful. However, this is an illegal operation. The Debugger
does not report the error.

Second Edition

DOC4033-193

C Operators

The only C operator not supported by the Debugger is the CAST operator.
All other Prime C operators are supported. Furthermore, these
supported operators used to evaluate expressions in the Debugger are
functionally identical to the corresponding operators in the Prime C
compiler. All expected side effects that occur in C programs also
occur when the operators are used from the Debugger. For example, an
increment operator (++) that precedes an integer variable will return
the value of the variable plus 1 and have the side effect of
incrementing that variable by 1. For example:

1 = 1

Special Characters

The C escape character (\) is not supported by the Debugger. Instead,
you should use the Debugger's escape character O . A null character
(\0) can be generated by evaluating a null string (""). See the
section in Chapter 4 on the escape character for representing a literal
newline (\n) and single quote (V).

Defaults for Constants

The default for a floating-point constant is DOUBLE. The default for
an integer constant is LONG.

The ?: Construct

The ?: construct is not supported by the Debugger.
IF, ELSE construct instead.

You should use the

Second Edition

C SESSIONS

SAMPLE SESSION

Suppose you have written a C program that takes a positive number and
returns a power of 2 greater than this number. The program compiles
and loads successfully, but watch what happens when you execute it:

OK, CC TEST -DEBUG
[CC revision 1.0 - 19.1]
0 Error(s) and 0 Warning(s) detected in 99 source lines.
OK, SEG -LOAD
[SEG rev 19.2]
$ LOAD TEST
$ LIBRARY CCLIB
$ LIBRARY
IOAD COMPLETE
$ EXECUTE
GET PCWER OF 2 GREATER THAN ANY POSITIVE NUMBER
TO EXIT THE PROGRAM ENTER 0
ENTER A POSITIVE NUMBER
13
THE POWER OF 2 GREATER THAN THIS NUMBER IS...
16
ENTER A POSITIVE NUMBER
4
THE PCWER OF 2 GREATER THAN THIS NUMBER IS...

4
ENTER A POSITIVE NUMBER
0
OK,

Second Edition

DOC4033-193

Notice that the program correctly gives the power of 2 greater than 13,
which is 16. But it also returns, incorrectly, 4 as the power of 2
greater than 4. You enter the Debugger and look at the source program:

OK, DBG TEST

Dbg revision 1.0 - 19.1 (30-November-1983)

> SOURCE PRINT 23
1: #include <stdio.h>
2: main () {
3 : in t x ;
4: printf ("GET PCWER OF 2 GREATER THAN ANY
5: printf ("TO EXIT THE PROGRAM ENTER 0\n");
6: printf ("ENTER A POSITIVE NUMBER\n");
7: scanf ("%d",&x);
8: while (x 1= 0) {
9 : f u n (x) ;

10: printf ("ENTER A POSITIVE NUMBER\n");
11: scanf ("%d",&x);
1 2 : }
13: }
1 4 : f u n (x)
15: int x; {
16 : i n t i ;
17: for (i=l; i<x; i«=l) ;
18: printf ("THE PCWER OF 2 GREATER THAN THIS
19: printf ("%2d\n\ i);
20: }

BOTTOM
>

int x;
printf ("GET PCWER OF 2 GREATER THAN ANY POSITIVE NUMBER\n");
printf ("TO EXIT THE PROGRAM ENTER 0\n");
printf ("ENTER A POSITIVE NUMBER\n");
scanf ("%d",&x);
while (x 1= 0) {

fun (x);
printf ("ENTER A POSITIVE NUMBER\n");
scanf ("%d",&x);

}

fun(x)
int x; {
int i ;

for (i=l; i<x; i«=l) ;
printf ("THE PCWER OF 2 GREATER THAN THIS NUMBER IS...W);
pr in t f ("%2d\n" , i) ;

You make sure your input is read correctly, so you place a breakpoint
on source line 8, restart the program, and check the value of variable
X:

> BREAKPOINT 8
> RESTART
GET POWER OF 2 GREATER rTHAN ANY POSITIVE NUMBER
TO EXIT THE PROGRAM ENTER 0
ENTER A POSITIVE NUMBER
4

**** breakpointed at MAIN\8
> : X
X = 4
>

Second Edition

C SESSIONS

Now that you know the value of X has been assigned correctly, you
suspect the problem lies in the function FUN. You step into this
function at source line 9, then make sure the argument for the function
has been successfully passed:

> BREAKPOINT 9
> CONTINUE

**** breakpointed at MAIN\9
> STEPIN

**** "in" completion at FUN\17
> ARGUMENTS
X = 4
>

The argument X for function FUN has been passed correctly. Therefore,
you decide to trace the value of I, because it is the only variable
whose value changes in this function:

> WATCH I
> CONTINUE
The value of FUN\I has been changed at FUN\17

from 1
t o 2

The value of FUN\I has been changed at FUN\17
from 2
t o 4

THE POWER OF 2 GREATER THAN THIS NUMBER IS...
4

ENTER A POSITIVE NUMBER

**** breakpointed at MAIN\8
> QUIT
OK,

You now notice that variable I fails to loop the appropriate number of
times. Your loop should stop as soon as I's value is greater than or
equal to X's value; and, in this case, I's value is equal to X's
value. Instead of:

I < X

your final loop value for I should read:

I <= X

Second Edition

DOC4033-193

After you correct the mistake, you run the program again, and it
executes successfully:

O K , S E G T E S T - „ . - - -
GET POWER OF 2 GREATER THAN ANY POSITIVE NUMBER
TO EXIT THE PROGRAM ENTER 0
ENTER A POSITIVE NUMBER
33
THE POWER OF 2 GREATER THAN THIS NUMBER IS..
64
ENTER A POSITIVE NUMBER
12
THE POWER OF 2 GREATER THAN THIS NUMBER IS...
16
ENTER A POSITIVE NUMBER
4
THE POWER OF 2 GREATER THAN THIS NUMBER IS...

8
ENTER A POSITIVE NUMBER
0
OK,

Second Edition

Special
Considerations

This appendix lists special considerations and restrictions to Debugger
usage . These app l y t o a l l l anguages . Fo r i n f o rma t i on on
language-specific considerations and restrictions, see the appendix on
sample debugging sessions with your particular language.

Special considerations and restrictions follow:

• If your program is inputting data from a PRIMOS data file and
you have suspended execution, you cannot use RESTART to rerun
the program unless you close the input file by entering the
Debugger's ! command followed by the PRIMOS CLOSE command and
the name of the input file you want to close. This applies to
output files as well.

• When debugging a program that closes file units indiscriminately
(that is, with CLOSE ALL) , the -FULI_.INIT option should be
specified on the DBG command line. If quick initialization is
used, the CLOSE ALL command should not be given from the
Debugger.

• If the program being debugged creates an on-unit for the system
condition TLLFEAL_INST$ or ANY$, this on-unit will be invoked
whenever any breakpoint is encountered. Hence, if such on-units
are used, the following Debugger commands should not be used:
BREAKPOINT, TRACEPOINT, STEP, STEPIN, STRACE, and VTRACE.

Second Edition

DOC4033-193

If the program being debugged uses specific segments in the
range 4001 through 4037 for some purpose (for example, for
temporary storage) without allocating those segments in SEG, the
Debugger may overwrite them for its own storage. To avoid this
problem, you may tell the Debugger which segments you are using
with the A/SYMBCL command in SEG. For example, the SEG command
A/SYMBCL TEMPI 177777 tells the Debugger that your program is
using segment 4027.

If execution is suspended at an entry to a program block, you
should not enter a Debugger GOTO command. It may skip over code
between the block entry and the first executable statement,
which sets up information used later in the block.

Second Edition

Strategies
in Debugging

STRATEGIES IN DEBUGGING

This appendix suggests some debugging strategies. These strategies are
just guidelines for debugging. They describe the symptoms of some of
the more common programming errors and suggest ways of zeroing in on
the causes. Debugging strategies are for the most part personal skills
acquired only through experience and a certain amount of frustration.

It is assumed that you have a good idea of what your program is
supposed to do and the algorithms and data structures that your program
uses.

It is assumed that your program has been compiled and loaded with no
errors. You should not attempt to execute a program which has not been
compiled or loaded successfully. When you execute your program, it
will fit into one of the following four Cases:

1. It will run until completion and produce correct results.

2. It will run until completion and produce incorrect results or
no results at all.

3. It will terminate abnormally, printing an error message and
returning to PRIMDS command level.

4. It will not terminate.

Second Edition

DOC4033-193

Program Completes Successfullv

If Case 1 applies, it is assumed you wish to use the Debugger to look
at the final state of the static variables declared within the program.
First execute the program using the Debugger. When a message appears
indicating that program execution has completed, the user may inspect
program-defined data using the : (evaluation) command. This message
will be "program execution complete" if the main program returns,
"program exit from (statement-id)" if a program block calls EXIT, or
"program stop at (statement-id)" if a STOP statement is executed.

Program Completes with Incorrect Results

If Case 2 applies, you might attempt to locate the problem by tracing
program execution and data computation.

If it is obvious that the error lies within one or a few statements,
setting breakpoints and monitoring the values of variables will
probably identify the source of the problem quite readily.

If, on the other hand, you don't know where to begin looking for the
problem, set breakpoints and tracepoints sparsely throughout your
program in an attempt to find the first indication that things are
awry. When this occurs, the problem area is more densely populated
wi th breakpoin ts unt i l you fina l ly zero in on the prob lem.
Specifically, the method is:

1. Determine by deduction the section of the program in which the
problem exists. If you are unable to localize the problem, the
entire program is considered suspect.

2. Choose no more than eight key locations within the suspected
code and place a breakpoint or tracepoint at each. Key
locations are statements, entries, and exits at which you may
detect correct or incorrect program operation by:

• Inspecting the values of variables

• Simply knowing that program control has arrived there

3. When the program encounters or fails to encounter a key
location and you detect something amiss, the size and location
of the suspected code can be modified appropriately. Steps 2
and 3 may be repeated until the suspected code consists of only
a few statements, at which time you may use the simpler method
described above.

Second Edition

STRATEGIES IN DEBUGGING

Program Terminates Abnormally

If the program terminates abnormally, you may reexecute the program
using the Debugger. When the error condition that caused termination
is raised, the Debugger regains control and returns to command level.
Through the use of the TRACEBACK command, you may determine the program
location at which the error occurred.

If you are unable to determine the cause of the error by looking at the
source code for the statement, the condition name may provide some
additional information.

If the error is the result of an access violation (condition
ACCESS_VTOLATION$), illegal segment reference (ILLEGAL_$EGNO$), pointer
fault (POINTER_FAULT$), or illegal page reference (0UT_OF_B0UNDS$), the
program was probably attempting to:

Reference through a pointer, label, or entry variable that
contains garbage (has not been initialized).

• Reference a subroutine argument that has not been supplied by
the caller.

Call a procedure that has not been loaded.

• Reference an external symbol that has not been defined.

An error of the type described above may also be the indirect result of
references to out-of-bounds array elements. (If this is suspect and
the compiler has the capability to generate code to check for
out-of-bounds array references, you should use it.)

If the error resulted from an illegal or restricted instruction
(conditions ILI£GAL_INSr$ and RESTRICTED_INSr$), your program either
intentionally or inadvertently executed an instruction which was
undefined (illegal) or unable to be executed in rings 1 or 3
(restricted). Most likely, you have overwritten a location in your
program via an out-of-bounds array reference or garbaged pointer, or
have caused control to be transferred to an incorrect location. The
latter may be done in a variety of ways. One way is "going to" an
uninitialized label variable in PL/I-G or supplying an illegal
alternate return in a FORTRAN subroutine call. If you are confronted
with this error, a procedure call/return stack trace using the
TRACEBACK command is usually a good place to start.

If the error occurs as the result of a null pointer (condition
NULI_POiNTER$), the explicit or implied pointer reference in the
faulting statement was attempted through a pointer whose value was, in
the PL/I-G sense, null. (The segment number was '7777.)

Second Edition

DOC4033-193

I f the e r ro r was the resu l t o f a l i nkage fau l t (cond i t ion
LINKAGE_JAULT$), your program attempted to execute a procedure call to
a routine that was not defined in the operating system or in a shared
library. Check with your System Administrator as to the whereabouts of
the missing routine.

An arithmetic exception error (condition ARTTH$) will occur when the
CPU detects an illegal arithmetic operation, such as an exponent
overflow or a divide-by-zero. An explanatory message is displayed by
the Debugger, indicating the cause of the condition and the action
taken by the Debugger (if any) to allow continuation of execution.
Find the source statement and inspect the values of the variables,
which comprise the expression (if necessary) to determine the cause.

A bad nonlocal GOTO error (condition BAD_£DNLO(_\I_£Cro$) indicates that
you attempted to go to a label variable which contained an illegal
display (stackframe) pointer. Find the source statement and, using the
Debugger evaluation command, examine the label variable. You might
choose to use the value tracing to identify the locations within the
program that the variable is modified.

Program Fails to Terminate

Case 4 applies if, after a reasonable period of time, the program fails
to terminate. This case can be called the "infinite loop."

As is done with the other cases described above, you should reexecute
the program under control of the Debugger. After allowing it to
execute a sufficient amount of time (presumably, to permit it to enter
the infinite loop), you may type the QUIT, BREAK, or CONTRQL-P key to
cause control to return to the Debugger.

By noting the value of the execution environment pointer, optionally
performing a traceback, continuing execution, and quitting again, you
should begin to get some idea of the area in which the loop exists.
This last step should be repeated as many times as necessary.

The area of the loop may be further refined by setting tracepoints and
breakpoints at key locations within the suspected code and continuing
execution.

Summary of
Debugger Commands

This appendix summarizes all 53 Debugger commands in alphabetical
order. Each command line is followed by a brief explanation of the
command's function, the chapters in which it is discussed, and brief
explanations of command line syntax elements, such as arguments and
options. Command abbreviations are underlined.

▶ :[language-name[,print-mode] 1 expression
p r i n t - m o d e j

The : (evaluation) command evaluates a variable or an expression
(Chapters 3 and 6).

The expression is the variable or expression that you wish to evaluate.
The optional language-name is the language of evaluation in which you
want your expression evaluated. The print-mode is the print mode in
which you want your expression evaluated. The print mode can be ASCII,
BIT, DECIMAL, FLOAT, HEX, or OCTAL.

▶ ! primos-command-line

The 1 command executes certain PRIMDS commands from Debugger command
level (Chapter 11).

Second Edition

DOC4033-193

The primos-command-line is one or more PRIMDS commands that you want to
execute from the Debugger. You must use internal PRIMDS commands, not
external commands.

▶ * [value]

The * command executes the current command line a specific number of
times or forever (Chapter 11).

The value is the optional number of times you want the command line to
be repeated.

▶ ACTIONLIST f SUPPRESS 1
(PRINT j

ACTIONLIST displays the commands in a breakpoint action list or in a
macro command list (Chapters 5 and 9).

The PRINT option specifies all lists to be displayed. The SUPPRESS
option deactivates the PRINT option, causing no lists to be displayed.

▶ AGAIN

AGAIN repeats the Debugger command line that has just been executed
(Chapter 11).

ARGUMENTS displays the values of the arguments passed to the program
block defined by the evaluation environment pointer (Chapter 6) .

The program-block-name is the name of the program block whose arguments
you want to display. The activation-number is a particular activation
of a specified program block.

▶ BREAKPOINT [breakpoint-identifier] [action-list]
[-AFTER value] [-BEFORE value]
[-EVERY value] [-COUNT value] [-_DIT]

[-IGNORE-NIGNORE

BREAKPOINT suspends the execution of your program (Chapters 3 and 5)

Second Edition

SUMMARY OF DEBUGGER COMMANDS

The breakpoint-identifier identifies the place where you want to
suspend execution, which can be an executable statement, statement
label, or entry to or exit from a program block. The action-list is an
optional list of Debugger commands that execute whenever a breakpoint
trap occurs.

The -AFTER option causes the breakpoint trap to occur only when the
value of the breakpoint counter exceeds the value of the specified
value following -AFTER. The -BEFORE option causes the breakpoint trap
to occur only when the value of the breakpoint counter is less than the
value following -BEFORE. The -EVERY option causes the breakpoint trap
to occur every n iterations through the breakpoint location, where n is
the value following -EVERY. The -COUNT option can be used to set the
breakpoint counter.

The -IGNORE option sets the ignore flag, causing the breakpoint trap to
be suppressed and never taken. The -NIGNORE option deactivates the
ignore flag so that the breakpoint trap is taken again. The -EDIT
option invokes the Debugger's command line editor so that you may
modify a breakpoint command line.

Entry/exit breakpoints are identified by one of the following three
formats:

• program-block-name\\breakpoint-type

• \preakpoint- type

• program-block-name\

The breakpoint-type can be either ENTRY or EXIT. The
program-block-name is the name of the program block at which you want
to break.

▶ CALL variable [(argument-list)]
CALL allows you to call a program block from Debugger command level
(Chapter 7).
The variable is the name of the program block you want to call. The
argument-list is a list of expressions or "parameters" that are
supplied or "passed" to the program block according to the rules of the
host language.

Second Edition

DOC4033-193

▶ CLEAR [breakpoint-identifier]

CLEAR deletes a breakpoint or a tracepoint (Chapters 5 and 8).

The breakpoint-identif ier must be any valid breakpoint or tracepoint
identifier, such as a source line number or statement label. Used fcy
itself, with no breakpoint identifier, CLEAR deletes the breakpoint or
tracepoint specified by the execution environment pointer.

^ CLEARALL [program-block-name [-DESCEND]] f-E_EAKP0INTS "i
-TRACEPOINTS

CLEARALL deletes either all breakpoints and tracepoints in the
debugging environment or all breakpoints and tracepoints in a specific
program block (Chapters 5 and 8).

The program-block-name is the name of the program block containing the
breakpoints and/or tracepoints that you want to delete. The
-BREAKPOINTS option causes only breakpoints to be deleted. The
-TRACEPOINTS option causes only tracepoints to be deleted. The
-DESCEND option deletes all breakpoints and tracepoints in a specified
program block and in all the nested program blocks or "descendants"
contained in the specified block. Used without any arguments, CLEARALL
deletes all breakpoints and tracepoints in the debugging environment.

▶ Q_)LINE

CMDLINE allows you to enter your program's command line arguments
(Chapters 3 and 13).

▶ CONTINUE

CONTINUE resumes program execution following a breakpoint, a
single-step operation, or an error condition. Program execution
resumes at the location specified fcy the execution environment pointer
(Chapters 3 and 5).

ENVIRONMENT program-block-name [\activation-number] 1
- P O P J

ENVIRCNMENT changes the evaluation environment, which is the program
block that the Debugger considers current (Chapter 6).

The program-block-name is the name of the program block that you want
as the new evaluation environment. The activation-number specifies a
particular activation of program-block-name. The -POP option removes

Second Edition

SUMMARY OF DEBUGGER COMMANDS

or "pops" an environment from the evaluation environment stack. Used
by itself, with no argument, ENVIRCNMENT displays the name of the
current evaluation environment.

• ENVLIST

ENVLIST displays the current evaluation environment and the contents of
the evaluation environment stack (Chapter 6).

CN
ETRACE { ARGS

ETRACE displays a trace message each time a program block is called or
returns. This is known as entry tracing (Chapter 8).

The ON option displays a trace message when each program block is
called and returned. The ARGS option displays trace messages at the
entry and exits to called program blocks and displays the values of
arguments passed to each called block at each entry (but not each
exit). The OFF option turns off entry tracing.

▶ GOTO [program-block-name\[activation-number\]] statement-identifier
GOTO moves the location of the execution environment pointer to another
statement in your program (Chapter 5).

The program-block-name is the name of the active program block that
contains the statement to which you want to transfer control. The
statement-identif ier is the statement to which you want to transfer
control. It can be a source line number, statement label, or any other
valid identifier as defined in Chapter 4. The activation-number
specifies that control is transferred to a statement in a particular
activation of a program block.

▶ HELP
-LIST
-SYM_LIST
command-name
syntax-symbol

HELP can help you remember and understand Debugger commands and
features by displaying information about those commands and features
(Chapter 3).

Second Edition

DOC4033-193

The command-name is the name of any Debugger command about which you
want command line syntax information. The syntax-symbol is any symbol
that is used in command syntax descriptions. The -LIST option lists
all Debugger commands in alphabetical order. The -SY^_IiIST option
lists all Debugger syntax symbols used in Debugger command line syntax.

▶ IF expression action-list [ELSE action-list]
IF executes a breakpoint action list, or any Debugger command
conditionally, contingent upon the result of an expression (Chapter 5).
The expression is any valid expression in the host language. The
expression can be either true or false. If the expression is true, the
first action-list immediately following the expression is executed, and
the ELSE clause, if present, is ignored. If the expression is false,
the first action list is ignored, but the ELSE action list, if present,
is executed.

▶ IN
IN continues program execution until the next program block is called
and suspends execution inside that block immediately before the first
executable statement (Chapter 7).

INFO program-block-name\
statement-identif ie r

INFO displays information about a program block or statement (Chapter
13).
The program-block-name is the name of the program block about which you
want information. The statement-identifier is the executable statement
about which you want information.

FORTRAN
F77
PL1G

▶ LANGUAGE PASCAL
COBCL
RPG

LANGUAGE changes the language of evaluation to evaluate expressions
(Chapter 6) .

Second Edition

SUMMARY OF DEBUGGER COMMANDS

Used without an argument, LANGUAGE displays the name of the current
host language. If you want to change the current language to another
language, enter one of the language names shown in the command format.

LET allows you to assign a new value to any variable defined by the
program (Chapters 3 and 6).

The variable is a user variable name, as defined in Chapter 4. The
expression is any expression permitted fcy the host language whose
resultant value is convertible to the data type of the variable.

▶ LIST [breakpoint- identi f ier]

LIST displays the attributes of one breakpoint or one tracepoint
(Chapters 5 and 8).

The breakpoint-identifier is the breakpoint or tracepoint that you want
to display. Used without the breakpoint identifier, LIST displays the
attributes for the breakpoint or tracepoint defined fcy the execution
environment pointer.

-TRACEPOINTS

LISTALL lists the attributes of all breakpoints and tracepoints
(Chapters 5 and 8).

The program-block-name is the name of the program block that contains
the breakpoints and tracepoints you want to display. The -BREAKPOINTS
option displays only breakpoints. The -TRACEPOINTS option displays
only tracepoints. The -DESCEND option displays all breakpoints and
tracepoints for a specified block and for all nested program blocks or
"descendants" contained in the specified block. If LISTALL is used
without arguments, a list of all breakpoint and tracepoint attributes
is displayed.

▶ LOADSTATE filename

IOADSTATE restores to your debugging session all the breakpoints,
tracepoints, and macros you have saved with SAVESTATE (Chapter 10) .

Second Edition

DOC4033-193

The filename PRIMDS that contains
breakpoints, tracepoints, and macros you want to use. (These files are
created with the Debugger's SAVESTATE command.)

) (c o m m a n d - l i s t)

macro-name { -DELETE I
(- E D I T I

-CHANGE_J&ME old-macro-name new-macro-name
-CN
-OFF

MACRO allows you to create new commands, known as macros, that can be
used in place of one or more Debugger commands (Chapters 9 and 12).

The macro-name is the name of the macro that you want to create. The
command-list is the list of one or more Debugger commands that you want
your macro name to stand for.

The -DELETE option deletes a specified macro. The -EDIT option invokes
the Debugger command line editor so that you can modify the macro
specified by macro-name. The -CHANGE_NAME option changes the name of a
macro from old-macro-name to new-macro-name. The -OFF option turns off
the use of macros without destroying your current macros. The -CN
option enables the use of macros once again.

▶ MACRCLIST [macro-name]

MACRCLIST displays one or all of your currently defined macros and
their command lists (Chapters 9 and 12).

The macro-name is the name of a specific macro that you want to
display. Used fcy itself, with no macro name, all macros in the macro
list and their corresponding command lists are displayed.

MAIN tells the Debugger what the main program block should be. The
main program is the program block that the Debugger calls when a
RESTART command is entered (Chapter 5).

The program-block-name is the name of the program block that you want
the Debugger to call when a RESTART command is entered. Used by
itself, with no program block name, MAIN displays the name of the main
program that the Debugger currently recognizes.

Second Edition

SUMMARY OF DEBUGGER COMMANDS

CUT continues program execution until the current block, defined fcy the
execution environment pointer, returns and execution suspends at the
exit of that block (Chapter 7).

▶ PAUSE
PAUSE temporarily suspends your Debugging session and returns you to
PRIMOS command level. You must enter only internal PRIMDS commands
with PAUSE, not external commands (Chapter 11).

▶ PMODE print-mode variable-1 [,variable-2 ...]

PMODE sets the print mode explicitly so that the specified print mode
will be used in your debugging session whenever a variable is evaluated
(Chapter 13).

The print-mode is the print mode you want to specify. It can be ASCII,
BIT, DECIMAL, FLOAT, HEX, OCTAL, or DEFAULT. variable-1, variable-2,
etc., are the variables you want evaluated with print-mode.

▶ PSYMBOL

PSYMBCL displays a list containing the names and current character
values of special symbols the Debugger recognizes (Chapter 4).

▶ QUIT

QUIT causes the debugging session to end and returns you to PRIMDS
command level (Chapter 3).

▶ RESTART [step-command]
RESTART starts and restarts program execution from within the Debugger
(Chapters 3 and 5).
The step-command is an optional Debugger single-stepping command.

Second Edition

DOC4033-193

▶ RESUBMIT

RESUBMIT invokes the Debugger command line editor so that you can
modify the most recent command line entered (Chapter 10).

SAVESTATE saves your breakpoints, tracepoints, and macros and places
them into a PRIMDS file in your directory for future use (Chapter 10).

The filename is the pathname of the PRIMDS file where you want your
breakpoints, tracepoints, and macros placed. If you do not specify a
pathname, the file will be placed in the directory to which you are
attached.

The -MACROS option causes only your macros to be placed into the file
specified by filename. The -BREAKPOINTS option causes only your
breakpoints and their action lists to be placed into the file. The
-TRACEPOINTS option causes only your tracepoints to be placed into the
fi l e .

If you specify only a filename without an option, then all of your
breakpoints, tracepoints, and macros are placed into the file specified
by filename.

SEGMENTS displays a list of segments in memory that are currently in
use (Chapter 13).

▶ SOURCE source-command [argument]

SOURCE allows you to examine your source file while debugging (Chapters
3 and 11).

The source-command is any EDITOR subcommand that can be used with
SOURCE. The argument is an EDITOR source subcommand object such as a
line number or text string.

▶ STATUS

STATUS displays various useful information about the state of your
debugging environment (Chapter 13).

Second Edition

SUMMARY OF DEBUGGER COMMANDS

j^ STEP [value]

STEP executes one or more statements at a time and steps across calls
to program blocks (Chapter 7).

The value is the number of statements you want to execute before
suspending execution. If no value is specified, one statement is
executed by default.

• STEPIN [value]

STEPIN executes one or more statements at a time and steps into program
blocks that are called (Chapter 7).

The value is the number of statements you want to execute before
suspending execution. If no value is specified, one statement is
executed fcy default.

(FULL
▶ STRACE I QUIET

OFF

STRACE allows you to display a trace message prior to the execution of
every statement in your program. This feature is known as statement
tracing (Chapter 8).

The FUIiL option displays a trace message prior to the execution of
every statement in your program. The QUIET option displays a trace
message only prior to the execution of each labelled statement. The
OFF option turns off statement tracing.

SYMBOL changes the value of a special symbol that is recognized by the
Debugger (Chapter 4).

The symbol-name is the name of the character symbol you want to change.
The character-value is the new character value of the symbol.

TRACEBACK [-FRAMES value [-I£AST_£ECENT]] [-FRO! value] [-TO value]
[-REVERSE] [-DBG] [-CNUnits] [-ADDRESSES]

TRACEBACK allows you to look at the contents of the call/return stack,
which is a list of currently active program blocks in your program
execution (Chapter 8).

Second Edition

DOC4033-193

The value is a positive non-zero integer.

Used by itself, with no option, TRACEBACK displays the contents of the
call/return stack from the most recent frame to the least recent frame.
The -FRAMES option displays only the number of frames that are limited
to the specified value. The -FRCM option starts displaying frames
beginning with the number represented by value. The -TO option
specifies that the last frame displayed is the frame represented by
value. The -REVERSE option displays the frames in reverse order. The
-DBG option displays all of the Debugger-owned frames. The -CNUNTTS
option displays names of all on-units and their corresponding program
blocks. The -ADDRESSES option displays internal address information.

▶ TRACEPOINT [breakpoint-identifier] [-AFTER value]
[-BEFORE value] [-EVERY value] [-COUNT value]

-IGNORE
-NIGNORE

TRACEPOINr allows you to display a trace message each time a statement,
label, or entry/exit to a program block is encountered (Chapter 8).

The breakpoint-identif ier is the statement, label, or entry/exit where
you want to display a trace message.

The -AFTER, -BEFORE, -EVERY, -COUNT, -IGNORE, and -NIGNORE options work
the way they do for breakpoints. (For an explanation of these options,
see the discussion under the BREAKPOINT command in this appendix, and
see Chapter 5.)

▶ TYPE expression

TYPE displays the data type and other attributes of a variable or
expression (Chapters 3 and 6) .

The expression is any expression permitted by the host language

▶ UKWATCH I variable-1 [, variable-2 ...] I
(- A L L)

UTWATCH removes one or more variables from the watch list, which was
created during value tracing with the WATCH command (Chapter 8).

variable-1, variable-2, etc., are the variables you want to remove from
the watch list. The -ALL option removes all variables from the watch
l i s t .

Second Edition

SUMMARY OF DEBUGGER COMMANDS

^ _ _ _ _ _ _

UNWIND erases the call/return stack and causes
environment pointer to become undefined (Chapter 8).

the execution

VPSD invokes the 64V mode Prime Symbolic Debugger (VPSD), which is one
of Prime's machine-level debuggers (Chapter 13).

[FULL▶ WRACE EJ7TRY_E_XIT
OFF

VTRACE can trace values at the entry or exit of a program block and
turn off value tracing (Chapter 8).

The ENTRY__EXTT option enables value tracing on only the entries to and
exits from program blocks. The OFF option causes value tracing to not
occur, although the contents of the watch list are undisturbed. The
FUU. option enables value tracing at every statement once again.

▶ WATCH variable-1 [,variable-2 ...]
WATCH displays a message whenever the value of one or more variables
changes during program execution. This feature is known as value
tracing (Chapters 3 and 8).

variable-1, variable-2, etc., are the variables whose values you want
to trace. The variables that you trace are placed onto an internal
Debugger table known as the watch list.

▶ WATCHLIST
WATCHLIST displays the names of variables currently in the watch list
(Chapter 8).

Second Edition

DOC4033-193

▶ WHERE [segment-number/address]

WHERE displays the location of the execution environment pointer
(Chapter 5).

You can find the program location that corresponds to a given segment
and halfword memory address by specifying the segment-number, which is
a segment number represented in octal, and the address, which is a
halfword address represented in octal.

Used by itself, with no argument, WHERE displays the current location
of the execution environment pointer.

Second Edition

Glossary of Terms

This appendix is a glossary of terms that are related to the Debugger
and its operations. The terms appear in alphabetical order with
accompanying definitions.
This glossary is not intended to provide descriptions of syntax symbols
that appear on Debugger command lines. Rather, it provides brief
definitions of Debugger-related terms that are used freely throughout
the book. For descriptions of Debugger command syntax symbols, see
Appendix J, the HELP command on-line descriptions, or the descriptions
given in the in-depth discussions throughout the book.

• absolute activation number

An unsigned integer constant specifying the actual number of an
activation — second, third, fourth, etc.

• action list
A list of Debugger commands, attached to
when the breakpoint trap occurs.

breakpoint, that execute

Second Edition

DOC4033-193

action list depth counter

A number enclosed in angle brackets that appears at the left margin,
immediately preceding an action list, when an action list is displayed
with the ACTIONLIST command. This counter specifies the nesting level
of the action list.

a c t i v a t i o n

A particular execution of a program block.

i activation number

An integer designating a particular activation of a program block.

act ive

A program block that has been called but has not yet returned.

address

A 16-bit (halfword) location in memory.
16-bit offsets.

Prime memory is addressable in

binary file

Same as object file (See object file.)

block

Same as program block. (See program block.)

breaking

The process of executing a breakpoint.

Second Edition

GLOSSARY OF TERMS

breakpoint

A suspension of program execution specified by the BREAKPOINT command,

breakpoint counter

A counter that keeps track of the number of times a breakpoint has been
encountered during program execution.

• breakpoint ignore flag

A flag, set by the BREAKPOINT command's -IGNORE option, that suppresses
a breakpoint so that the breakpoint is never taken.

A problem that prevents the successful execution of a program,

bui l t - in funct ion

A language-defined function that can be used to evaluate expressions.
The Debugger supplies standard Pascal, built-in PL/I-G and C, and
intrinsic FORTRAN functions for the user.

• CALL frame

A frame on the call/return stack that is created by a CALL command
invocation of the Debugger.

• call /return stack

An internal stack that contains a list of active program blocks during
program execution.

command line editor

The Debugger's line editor that edits the most recent command line
entered or any breakpoint action list or macro command list.

Second Edition

DOC4033-193

command list

A list of Debugger commands that usually refers to a macro command
list, which appears inside square brackets following a macro name when
a macro is created. (This is synonymous with action list.)

compile time

The time or moment at which a program is compiling.

• conditional action list

An action list that executes contingent upon the result of
expression designated by the IF command.

• conditional breakpoint

A breakpoint that is taken or not taken, depending on the conditions
that are specified by the BREAKPOINT command's -AFTER, -BEFORE, and
-EVERY options.

> condition frame

A frame on the call/return stack that represents a a call to an error
condi t ion.

• current evaluation environment

The environment, or block, defined fcy the evaluation environment
pointer. Synonymous with current program block.

current program block

The block, or environment, defined by the evaluation environment
pointer. Synonymous with current evaluation environment.

• data manipulation

Debugger features that allow the user to examine, evaluate, and modify
variables and expressions.

Second Edition

GLOSSARY OF TERMS

The PRIMOS command that invokes the Debugger,

i debug mode

The mode that a compiled module is in when the -DEBUG option has been
activated. All Debugger features are available in debug mode.

• Debugger control

Debugger features that allow the user to make the Debugger interpret or
treat information in a particular way.

• Debugger-defined variables

Three variables ($MR, $COUNT, and $COUNTERS) that are created fcy and
always known to the Debugger. These variables may be referenced by the
user.

Debugger-owned frame
A frame on the call/return stack that represents a call fcy the Debugger
that returns to the Debugger.

• default

A state of being, action, or lack of action that takes place
automatically when no alternative is specified.

The entry control block for an entry to an object routine.

en t ry

A position in program execution at the entry to a program block —
immediately after the call to the block, prior to the execution of the
first executable statement.

Second Edition

DOC4033-193

entry breakpoint

A breakpoint that occurs at the entry of a program block.

entry tracing

The process of displaying a trace message each time a program block is
called or returned.

• environment

A location that the Debugger recognizes as the current area in which an
expression is to be evaluated (evaluation environment) or execution is
to resume (execution environment).

erase character

A special character that erases the previous character typed,
system default is the double quote (").

* escape character

A circumflex or up-arrow character O that affects the meaning of the
character or characters that immediately follow it.

escape sequence

A sequence of characters beginning with the escape character and ending
with the last character to be affected by the escape character.

i evaluation environment

A program block that the Debugger considers current and uses to
identify statements and evaluate variables and expressions. The
program block in which the user is debugging is the default.

Second Edition

GLOSSARY OF TERMS

• evaluation environment pointer

A pointer that gives the default (current) evaluation environment
(program block) to be used for finding variables and statements and for
examining source files.

evaluation environment stack

An internal stack that contains evaluation environments recently
selected using the ENVIRCNMENT command.

executable file

Same as runfile. (See runfile.)

executable statement

A statement in a source program that performs some action.
Debugger can suspend execution only at executable statements.

execution environment

A location that the Debugger recognizes as the current area in which
execution is to resume.

• execution environment pointer

A pointer that gives the location at which execution resumes when a
CONTINUE or single-step command is given.

e x i t

A position in program execution at the exit from a program block
outside the block, immediately after the block has returned.

exit breakpoint

A breakpoint that occurs at the exit from a called program block.

Second Edition

DOC4033-193

fault frame

A frame on the call/return stack that represents a hardware fault.

i frame

A representation of a program block call that is placed on the
cal l /return stack.

host language

The language of the program block defined by the current evaluation
environment.

information request

Debugger features that allow the user to request special information.

insert line

A physical line number in a $INSERT or %INCLuTE file.

i n te rac t i ve

Dialog between the Debugger and the user that takes place at the source
code level.

• kil l character

A character that causes a line typed thus far to be ignored. The
system default is the question mark (?).

l abe l

Same as statement label. (See statement label.)

Second Edition

GLOSSARY OF TERMS

• language of evaluation

The high-level language whose syntax rules the Debugger uses at any
given time to evaluate expressions.

• l ine offset

The number of physical source lines following the line containing a
statement label.

- macro list

An internal Debugger table that contains macros created with the MACRO
command.

i main program

The program block that is loaded first during the loading process and
the program block that the Debugger calls when a RESTART command is
entered.

m u l t i l i n g u a l

A Debugger capability that describes the way the Debugger understands
source code syntax rules in all supported Prime high-level languages.

nested action list

An action list contained within another action list.

nodebug mode

The mode that a compiled module is in when the -NODEBUG option has been
activated or when no debugging options have been specified. (No
Debugger features are available in nodebug mode.)

object (binary) file

A file containing one or more binary modules created by compilation.

Second Edition

DOC4033-193

opt ion

A part of a Debugger or PRIMDS command line that can be specified to
perform or not perform a particular function that is related to the
command's function.

owner block

The program block that is represented by a particular frame on the
cal l /return stack.

• pathname

The complete name of a PRIMDS file, which may include the name of the
Master File Directory (MFD), the User File Directory (UFD), and one or
more sub-UFD names, as well as the filename.

A removal of an evaluation environment off the top of the evaluation
environment stack using the ENVIRCNMENT command's -POP option.

• print mode

A mode that specifies the format in which the result of a variable or
expression evaluation is printed. Print modes include ASCII, BIT,
DECIMAL, FLOAT, HEX, and OCTAL.

production mode

The mode that a compiled module is in when the -PRODUCTION option has
been activated. (Debugger features that do not involve statements are
available in production mode.)

• program block

A universal language-independent definition of a main program,
procedure, function, subroutine, BEGIN block, or any other program unit
in any of Prime's languages. (Chapter 4 defines program blocks for
each language.)

Second Edition

GLOSSARY OF TERMS

program control

A type of Debugger feature that allows the user to manipulate the
execution of a program.

> prompt

A symbol that appears on the terminal and waits for command input from
the user.

recursion

The process by which a program block calls itself or causes itself to
be called.

relative activation number

A number that specifies the number of activations to count backwards
from, beginning at the most recent activation of the specified program
block. This number is specified fcy a minus sign (-) immediately
followed by an integer constant.

r u n fi l e

An executable version of a program
that is ready to be executed.

a SEG file containing a program

• runtime

The time or moment at which a program is executing.

• SAVESTATE file

A PRIMDS file, created by the SAVESTATE command, that contains saved
breakpoints, tracepoints, and macros.

Prime's segmented loading utility for V-mode and I-mode files.

Second Edition

DOC4033-193

segment
A block of address space consisting of 131,072 bytes.

• separator character
A character that separates one command line from another. The default
is a semicolon.

• source file

A file containing programming (compilable) source code in the format
defined by any of Prime's high-level languages.

source line number

The physical line number in the source file.

• special character

A certain character, which the user can enter at the terminal, that has
a special meaning to the Debugger. These characters either cause
special actions or are interpreted as part of special command syntax.

• special symbol

A special character that can be examined and changed with the PSYMBCL
and SYMBOL commands.

• stack

A dynamic work area for storing addresses and other data values. It is
called dynamic because it is assigned when a program block is called
and released upon return from the block.

statement label

A statement label number or label constant, RPG tag, or COBOL paragraph
name or section name.

Second Edition

GLOSSARY OF TERMS

statement offset

The number of statements to count from the first statement on a
multistatement line. The first statement on a line has a statement
offset of 0, the second has an offset of 1, and so on.

statement tracing

The process of displaying a trace message prior to the execution of
every statement in a program.

step counter

An invisible counter that contains the number of statements left to be
executed before execution is suspended and control returns to Debugger
command level.

subcommand

Any non-Debugger or non-PRIMDS command that is used with or after a
Debugger command, such as a SOURCE subcommand or command line EDITOR
subcommand.

• suffix conventions

A method for naming source files, object files, and runfiles, in which
particular suffixes are attached to these files during the process of
compiling, loading, and executing.

> symbol table

An internal table of data objects, which includes the name, location,
and attribute of each source program variable, and a statement map that
contains the location of compiled code corresponding to each source
language statement. The Debugger uses this table to relate the object
(binary) code to the high-level language source code.

t racepo in t

A message that is displayed on the terminal, via the TRACEPOINr
command, each time a selected statement,entry, or exit is encountered.

Second Edition

DOC4033-193

tracing

Debugger features that allow the user to trace the progress of program
execution from beginning to end.

t rap

Same as a breakpoint. (See breakpoint.)

user-owned frame

A frame on the call return stack that represents a user program block
ca l l .

• V-mode

The addressing mode normally generated by Prime's compilers. Programs
in V-mode can take full advantage of virtual address space and of the
V-mode instruction set.

value tracing

The process of keeping track of or "watching" the values of variables
change through the execution of a program.

Second Edition

On the following page, this appendix provides a quick reference of
commands, listed chapter by chapter. For convenience, you may want to
remove the page and tape it to your office wall, or to the front or
back cover of this book.

Second Edition

DOC4033-193

List of Commands by Chapter

Chapter 3 Chapter 8

DBG
RESTART
CMDLINE
SOURCE
BREAKPOINT
CONTINUE

TYPE
LET
WATCH
HELP
QUIT

TRACEPOINT
LIST
LISTALL
CLEAR
CLEARALL
WATCH
WATCHLIST

Chaoter 4

PSYMBOL SYMBOL
MACRO
MACROLIST

Chapter 9

ACTIONLIST

Chapter 5

RESTART
CONTINUE
BREAKPOINT
IF
ACTIONLIST
LIST

LISTALL
CLEAR
CLEARALL
WHERE
GOTO
MAIN

Chapter 10

R E S U B M I T S A V E S T A T E
BREAKPOINT -EDIT LOADSTATE
MACRO -EDIT

Chapter 11

Chapter 6

TYPE
LET
ARGUMENTS

ENVIRONMENT
ENVLIST
LANGUAGE

SOURCE EX
SOURCE NAME
SOURCE RENAME

PAUSE

AGAIN

Chapter 12

MACRO MACROLIST

Chapter 7 Chapter 13

STEP
STEPIN
IN

OUT
CALL

DBG
CMDLINE
INFO
SEGMENTS

STATUS
PMODE
VPSD

Inde

! command, 11-6, 11-7, J-l, J-2

* command, 11-8, 11-9, J-2

: command, 3-13, 3-14, 6-1 to
6-11, J-l

ACTIONLIST command, 5-13, 5-14,
9-10, J-2

Activating execution, 3-5 to
3-7, 5-2

Activation number,
absolute, 4-9
d e fi n i t i o n , 4 - 9
re la t i ve , 4 -9

Numbers

-64V compile option, 3-24, A-l

Absolute activation number, 4-9

Action list depth counter, 5-13

Action l ists,
conditional, 5-9, 5-10
d e fi n i t i o n , 5 - 8
delet ing, 5-9
displaying, 5-13, 5-14
IF command, 5-9, 5-10
modifying, 5-9
nested, 5-10

Act iva t ions, 4-9

Active program blocks,
defin i t i on , 4 -10
tracing of, 8-14

Advanced features, 13-1 to 13-11

Advanced information request
commands, 13-6 to 13-9

Advanced macros, 12-1, 12-2

AGAIN command, 11-9, J-2

Ambiguous block reference, 4-5

Arguments,
displayed at entries, 8-12
displaying, 6-14, 6-15

Second Edition

DOC4033-193

Arguments (continued)
entering with CMDLINE, 3-7,

3-8, 13-5
passing with CALL, 7-10 to

7-13

ARGUMENTS command, 6-14, 6-15,
J-2

Arrays, referencing, 6-4 to 6-8

Based PL/I-G variables, 8-7, 8-8

BEGIN block, 4-3

Blanks character, 4-21

label, 4-15
program block, 4-5
sample sessions, G-l
special considerations, G-l

CALL command, 7-10 to 7-13, J-3

CALL frame, 7-13, 8-17

Call level, 7-12, 7-13

Call/return stack, 7-13, 8-14 to
8-23

Calling program blocks, 7-10 to
7-13

Bound pair, 6-4

Breakpoint,
action lists, 5-8 to 5-14
conditional, 5-14 to 5-16
counter, 5-14, 5-16
definition, 3-11, 5-3, 5-4
deleting, 5-21 to 5-23
displaying, 5-18 to 5-21
entry/exit, 5-5 to 5-8
ignore flag, 5-18
modifying, 10-6, 10-7
restoring, 10-10, 10-11
saving, 10-7 to 10-9
setting, 3-11, 5-3
suppressing, 5-18

BREAKPOINT command, 3-11, 3-12,
5-3 to 5-18, J-2, J-3

Breakpoint ident ifier, 3-11,
5-4, 8-2

Breakpoint type, 5-5

Built-in functions, 4-6, 6-9,
6-10

Changing evaluation environment,
6-16 to 6-20

Changing special symbols, 4-22

Chapter list of commands, L-l

Character,
blanks, 4-21
erase, 4-16 to 4-21
escape, 4-16 to 4-21
kill, 4-16 to 4-21
separator, 4-2, 4-18, 4-21,

11-2
wild, 4-21

Characters, special, 4-16 to
4-21

CLEAR command, 5-21, 5-22, 8-3,
J-4

CLEARALL command, 5-22, 5-23,
8-3, J-4

CMDLINE command, 3-7, 3-8, 13-5,
J-4

COBCL 74,
label, 4-14
program block, 4-5

Second Edition

INDEX

COBOL 74 (continued)
sample sessions, E-l
special considerations, E-l

-COMINPUT option, 13-3

Command formats, 4-2

Command line editor, 10-1 to
10-7

Command summary, J-l to J-14

Commands,
compile, 3-3
editing, 10-1 to 10-7
listed by chapter, L-l
multiple, 4-2
PRIMDS (See PRIMOS commands)
summary of, J-l to J-14

Comments, 4-2

Compile commands, 3-3

Compiler options, 13-3 to 13-5

Compiling programs, 3-2, 3-3

Concepts, 4-1 to 4-23

Condition frame, 8-16

Conditional action lists, 5-9,
5-10

Conditional breakpoints, 5-14 to
5-16

CONTINUE command, 3-13, 5-3, J-4

Continuing execution, 3-13, 5-3

Conventions,
Debugger-related, 4-1 to 4-23
s u f fi x , 3 - 3

$C0UNT variable, 6-25

Counter,
action list depth, 5-13
and $COUNT, 6-25
breakpoint, 5-14, 6-25
step, 7-4

$C0UNTERS variable, 6-25, 6-26

Creating macros, 9-2

Current evaluation environment,
4-7, 6-16

Data,
examining, 3-13 to 3-16, 6-1

to 6-27
modifying, 3-13 to 3-16, 6-13,

6-14
pointer type, 6-11, 6-12
type evaluation, 3-15, 6-12,

6-13

Data manipulation,
command list, 2-4
definition, 2-3, 3-13, 6-1

$DBG block,
and functions, 6-9
d e fi n i t i o n , 4 - 6
i l l u s t r a t i o n , 4 - 7

DBG command, 1-4, 3-1, 3-4,
10-11, 13-2

DBG options (See Options, DBG)

-DEBUG compile option, 1-2, 3-2,
3-3, 3-24, 13-4

Debug mode, 13-4

Debugger,
bui l t - in funct ions, 4-6
CALL frame, 7-13, 8-17
command level, 3-5
command line editor, 10-1 to

10-7
command prompt, 3-5, 4-2
commands listed by chapter,

L - l
concepts, 4-1
conventions, 4-1
$DBG block, 4-6
defined blocks, 4-6
defined variables, 4-6, 6-24

to 6-26

Second Edition

DOC4033-193

Debugger (continued)
definition, 1-1 to 1-4
entering, 3-4, 3-5
$EXTERNAL block, 4-6, 6-27
features, 2-1 to 2-8
glossary of terms, K-l to K-14
invoking, 3-2 to 3-5
multiple commands, 4-2, 11-2
options, 3-5, 13-2, 13-3
owned frame, 8-16
sample sessions, 3-20 to 3-26
special considerations, H-l
s t rategies, 1-1
summary of commands, J-l to

J-14
terms, 4-1
VPSD, 13-11

Displaying (continued)
macros, 9-9, 9-10
special symbols, 4-21
tracepoints, 8-3
watch list, 8-8

Documents, related, 1-6, 1-7

Dollar sign,
in labels, 4-11, 4-14, 4-15
in program block names, 4-3 to

4-6

Dynamic Pascal variables, 8-7,
8-8

Debugger commands, repeating,
11-8, 11-9

Debugger control,
command list, 2-6
defin i t i on , 2 -6

Debugger sessions, suspending,
11-7, 11-8

Debugger-owned frame, 8-16

Debugging strategies, 1-1

Defau l t ,
language, 6-22
print mode, 13-9
special symbols, 4-21

Defining main program, 5-26

Delet ing,
action l ists, 5-9
breakpoints, 5-21 to 5-23
tracepoints, 8-3

Depth counter, action list, 5-13

Displaying,
action lists, 5-13
arguments, 6-14, 6-15
breakpoints, 5-18 to 5-21
call/return stack, 8-14 to

8-23
current evaluation environment,

6-16, 6-20

Editing breakpoints and macros,
10-6, 10-7

Editing commands, 10-1 to 10-7

EDITOR and RUNOFF, 1-7, 3-8

Editor, command line, 10-1 to
10-7

END-SAVE, 10-9

Entering arguments with CMDLINE,
13-5

Entering Debugger, 3-4, 3-5

Entry tracing, 8-11, 8-12

Entry/exit breakpoints, 5-5 to
5-8

Environment,
defin i t i ons , 4 -7
evaluation, 4-7, 4-8
execution, 4-7, 4-8
pointers, 4-7, 4-8

ENVIRCNMENT command, 6-16 to
6-20, J-4, J-5

ENVLIST command, 6-20, J-5

Erase character, 4-16 to 4-21

Second Edition

INDEX

Erasing call/return stack, 8-23

Escape character, 4-16 to 4-21

Escape sequence, 4-19

ETRACE command, 8-11, 8-12, J-5

Evaluating expressions, 3-13 to
3-16, 6-1 to 6-12

Evaluating pointer data, 6-11,
6-12

Execution,
activating, 3-5 to 3-7, 5-2
continuing, 3-13, 5-3
suspending, 3-11, 3-12, 5-3 to

5-18

Execution environment, 4-7, 4-8

Execution environment pointer,
4-7, 4-8

Exit and entry breakpoints, 5-5
to 5-8

Evaluation command, 3-13, 3-14,
6-2 to 6-12, J-l

Exit and entry tracing, 8-11,
8-12

Evaluation environment,
changing, 6-16 to 6-20
current, 4-7, 4-8, 6-16
defini t ion, 4-7, 4-8
stack, 6-18

Evaluation environment pointer,
4-8

Evaluation, language of (See
Language of evaluation)

EX subcommand, 11-2, 11-3

Expressions,
evaluating, 3-13 to 3-16, 6-1

to 6-12
evaluating pointer, 6-11, 6-12
modifying, 3-15, 3-16, 6-13,

6-14

$EXTERNAL block, 4-6, 6-27

External PRIMDS commands, 11-7

External variables, 4-6, 6-27

Examining data, 3-13, 3-14, 6-1
to 6-27

Examining source programs, 3-8
to 3-10

sessions)

Executable file, 3-2

Executable statement, 3-11, 5-3

Executing PRIMOS commands, 11-6
to 11-8

Executing programs,
normally, 3-4
with arguments, 3-7, 3-8
with RESTART, 3-5 to 3-7, 5-2

Fault frame, 8-16

Features, Debugger,
advanced, 13-1 to 13-11
data manipulation, 2-3, 2-4
Debugger control, 2-6
information request, 2-7
miscellaneous, 2-7, 2-8, 11-1
overview, 2-1, 2-2
program control, 2-2, 2-3,

5-1, 7-1
tracing, 2-5, 8-1 to 8-22

Filename conventions, 3-3

Files, SAVESTATE, 10-7

Finding execution environment
pointer, 5-23

Second Edition

DOC4033-193

Formats,
command, 4-2
entry/exit breakpoint, 5-5
special CALL, 7-12
statement identification, 4-11

to 4-16
var iable ident ificat ion, 4-10,

4-11

HELP command, 3-18, 3-19, J-5,
J-6

Host language, 4-8

FORTRAN 77,
label, 4-14
program block, 4-3
sample sessions, B-l
special considerations, B-l

FORTRAN intrinsic functions,
6-9, 6-10

FORTRAN TV,
label, 4-14
program block, 4-3
sample sessions, A-l
special considerations, A-l

Frames,
condition, 8-16
Debugger CALL, 8-17
Debugger-owned, 8-16
definition, 7-13, 8-14
faul t , 8-16
types of, 8-15 to 8-17
user-owned, 8-15

-FuT__TNTT option, 13-3

Functions,
built-in, 4-6, 6-9, 6-10
C, 6-9, 6-10
FORTRAN, 6-9, 6-10
list of, 6-10
Pascal, 6-9, 6-10
PL/I-G, 6-9, 6-10

Identifying statements, 4-11 to
4-16

Identifying variables, 4-10,
4-11

IF command, 5-9, 5-10, J-6

Ignore flag, 5-18

IN command, 7-7, 7-8, J-6

INFO command, 13-6, 13-7, J-6

Information request,
advanced commands, 13-6 to

13-9
command list, 2-7
d e fi n i t i o n , 2 - 7

Insert line, 4-11

Internal PRIMOS commands, 11-7

Intrinsic FORTRAN functions,
6-9, 6-10

Invoking Debugger, 3-2 to 3-5

Kill character, 4-16 to 4-21

Getting help, 3-18, 3-19

Getting started, 3-1 to 3-26

Glossary of Debugger terms, K-l

GOTO command, 5-24 to 5-26, J-5

labe ls ,
C, 4-15
defin i t i on , 4 -11
FORTRAN 77, 4-14

Second Edition

INDEX

Labels (continued)
FORTRAN IV, 4-14
Pascal, 4-14
PL/I Subset G, 4-14
RPG, 4-14
statement, 4-11

Language,
defaul t , 6-22
host, 4-8
l i b r a r i e s , 3 - 3
name, 6-2 to 6-4

LANGUAGE command, 6-20, 6-22,
6-23, J-6, J-7

lianguage of evaluation,
caution, 5-10
changing, 6-20, 6-22, 6-23
d e fi n i t i o n , 4 - 8

leaving Debugger, 3-20

LET command, 3-15, 3-16, 6-13,
6-14, J-7

Libraries, language, 3-3

Line offset, 4-11

LIST command, 5-19, 8-3, J-7

LISTALL command, 5-20, 8-3, J-7

loading programs, 3-4

LOADSTATE command, 10-10, 10-11,
J-7, J-8

-LOADSTATE option, 10-11, 13-2

Ijooking at call/return stack,
8-14 to 8-23

MACRO command, 9-2 to 9-8, 12-1,
J-8

MACROLIST command, 9-9, 12-1,
J -8

Macros,
advanced, 12-1, 12-2
changing names of, 9-2
creating and using, 9-2 to 9-8
defining other macros, 9-8
d e fi n i t i o n , 9 - 1
displaying, 9-9
examples, 9-8, 12-1, 12-2
i l lustrat ions, 9-3, 9-6
modifying, 10-6, 10-7
restoring, 10-10, 10-11
saving, 10-7 to 10-9
with parameters, 9-3 to 9-8

MAIN command, 5-26, 5-27, J-8

Main program, defining, 5-26

Miscellaneous features,
command list, 2-8
d e fi n i t i o n , 2 - 7

Mode,
debug, 13-4
nodebug, 13-4, 13-5
production, 13-4

Modifying,
action l ists, 5-9
commands, 10-1 to 10-7
data, 3-13, 3-15, 3-16, 6-13,

6-14

$MR variable, 6-24, 6-25

Multilingual feature, 1-2, 1-3,
6-20

Lower bound, 6-5 Multiple commands, 4-2, 11-2

Machine registers, 6-24

Machine-level debugger, 13-11

NAME subcommand, 11-3 to 11-6

Nested action lists, 5-10

Second Edition

DOC4033-193

Newline character, 4-19, 4-20

-NO_COMINPUT option, 13-3

-N0_VERIFY_PR0C option, 13-3

-NO_VERIFY_JSYMBQLS option, 13-2

Nodebug mode, 13-4, 13-5

-NODEBUG option, 13-4

Number, activation, 4-9

On-units, 8-16, 8-20

Options, compiler, 13-3 to 13-5

Options, DBG,
-COMINPUT, 13-3
-FULL_INIT, 13-3
-LOADSTATE, 13-2
-NO_COMINPUT, 13-3
-NO_VERIFY_PROC, 13-3
-N0_VERIFY_J3YMB0LS, 13-2
-QUIO__INTT, 13-3
table, 13-2, 13-3
-VERIFY_PROC, 13-3
-VERIFY_JSYMBQLS, 13-2

OUT command, 7-9, 7-10, J-9

Overview of features, 2-1

Parameters in macros, 9-3 to 9-8

Pascal,
arrays, 6-7, 6-8
dynamic variables, 8-7, 8-8
external variables, 6-27
label, 4-14
program block, 4-5
sample sessions, C-l
standard functions, 6-9, 6-10

PAUSE command, 11-7, J-9

PL/I Subset G,
arrays, 6-7
based variables, 8-7, 8-8
external variables, 6-27
label, 4-14
program block, 4-3 to 4-5
sample sessions, D-l
special considerations, D-l

PMODE command, 13-9 to 13-11,
J -9

Poin ter,
C data, 6-11, 6-12
evaluation environment, 4-8
execution environment, 4-7,

4-8
expression evaluation, 6-11,

6-12
Pascal data, 6-11, 6-12
PL/I-G data, 6-11, 6-12
watching variables, 8-7, 8-8

Popping environments off stack,
6-20, 6-21

Prime Symbolic Debugger, 13-11

PRIMOS commands,
executing, 11-6 to 11-8
external, 11-7
internal, 11-7

Print mode, default, 13-9

Print modes, 6-2 to 6-4, 13-9 to
13-11

Production mode, 13-4

-PRODUCTION option, 13-4

Program block,
active, 4-10
arguments, 6-14, 6-15
BEGIN, 4-3
C, 4-5
calling, 7-10 to 7-13
COBCL 74, 4-5
$DBG, 4-6
Debugger-defined, 4-6
definition, 4-3
$EXTERNAL, 4-6
FORTRAN 77, 4-3

Second Edition

INDEX

Program block (continued)
FORTRAN TV, 4-3
i l l u s t r a t i o n , 4 - 4
Pascal, 4-5
PL/I Subset G, 4-3 to 4-5
RPG, 4-5
uniquely defined, 4-3 to 4-5

Program block name, 4-10, 4-11,
5-5

Program control,
calling program blocks, 7-10

to 7-13
command list, 2-3
definit ion, 2-2, 5-1
single stepping, 7-1 to 7-10
t ransfer r ing, 5-24

Programs,
compiling, 3-2, 3-3
complete successfully, 1-2
complete with incorrect

resu l ts , 1-2
executing, 3-4
fail to terminate, 1-4
loading, 3-4
terminate abnormally, 1-3

Prompt,
command line editor, 10-2
Debugger, 3-5, 4-2
special Debugger, 7-12
VPSD, 13-11

PSYMBCL command, 4-21, J-9

Pushing environments onto stack,
6-18, 6-19

-QUia_JNTT option, 13-3

QUIT command, 3-20, J-9

Quitting Debugger, 3-20

Recursion, 4-9, 6-17, 8-22

Referencing,
arrays, 6-4 to 6-8
Debugger-defined variables,

6-24 to 6-26
external variables, 6-27
statements, 4-11 to 4-16
variables, 4-10, 4-11

Registers, machine, 6-24

Related documents, 1-6, 1-7

Relative activation number, 4-9

Removing watch list variables,
8-9

RENAME subcommand, 11-6

Repeating Debugger commands,
11-8, 11-9

RESTART command, 3-5 to 3-7,
5-2, J-9

Restoring breakpoints,
tracepoints, and macros,
10-10, 10-11

RESUBMIT command, 10-4, 10-6,
J-10

Resuming execution, 3-13, 5-3

RPG,
label, 4-14
program block, 4-5
sample sessions, F-l
special considerations, F-l

Runfile, defini t ion, 3-2

RUNOFF and EDITOR, 1-7, 3-8

Runtime, definition, 3-2

Second Edition

DOC4033-193

Source line, 4-11

Sample Debugger sessions,
C, G-l
COBOL 74, E-l
for getting started, 3-20 to

3-26
FORTRAN 77, B-l
FORTRAN IV, A-l
Pascal, C-l
PL/I Subset G, D-l
RPG, F-l

SAVESTATE command, 10-7 to 10-9,
J-10

SOURCE subcommands, 3-9

Special characters, 4-16 to 4-21

Special considerations,
COBOL 74, E-l
for all languages, H-l
for C, G-l
for FORTRAN 77, B-l
for FORTRAN TV, A-l
for Pascal, C-l
for PL/I Subset G, D-l
for RPG, F-l

SAVESTATE files, 10-7

Saving breakpoints, tracepoints,
and macros, 10-7 to 10-9

SEG utility, 3-4, 3-5

SEGMENTS command, 13-7, 13-8,
J-10

Special symbols,
changing, 4-22
defaul t , 4-21
defin i t i on , 4 -21
di splaying, 4-21

Stack,
call/return, 7-13, 8-14
evaluation environment, 6-18

Separator character, 4-2, 4-18,
4-21, 11-2

Standard Pascal functions, 6-9,
6-10

Sequence, escape, 4-19

Sessions, sample Debugger (See
Sample sessions)

Sett ing,
breakpoints, 3-11, 5-3
print modes, 13-9
tracepoints, 8-2

Single stepping,
d e fi n i t i o n , 7 - 1
il lustrations, 7-5, 7-7, 7-9,

7-11
IN command, 7-7, 7-8
OUT command, 7-9 to 7-11
STEP command, 7-2 to 7-5
STEPIN command, 7-5 to 7-7

Software requirements, 1-2

SOURCE command, 3-8 to 3-10,
11-2 to 11-6, J-10

Star extent, 6-4

Statement identifier, 4-11

Statement label, 4-11
(See also Labels)

Statement offset, 4-11

Statement tracing, 8-12 to 8-14

Statements, identifying, 4-11 to
4-16

STATUS command, 13-8, 13-9, J-10

STEP command, 7-2 to 7-5, J-ll

Step counter, 7-4

STEPIN command, 7-5 to 7-7, J-ll

Stepping (See Single stepping)

Source file suffixes, 3-3

Second Edition

INDEX

STRACE command, 8-12 to 8-14,
J - l l

Strategies in debugging, 1-1

Subcommands,
command line editor, 10-2 to

10-5
EX, 11-2, 11-3
NAME, 11-3 to 11-6
RENAME, 11-6
SCURCE editor, 3-9

Suffix conventions, 3-3

Suffixes, source file, 3-3

Summary of commands, J-l to J-14

Suppressing breakpoints, 5-18

Suppressing value tracing, 8-10

Suspending Debugger sessions,
11-7, 11-8

Suspending execution, 3-11,
3-12, 5-3 to 5-18

SYMBCL command, 4-22, J-ll

Symbol table, 1-2, 1-4, 3-3

Tracepoint (continued)
displaying, 8-3
setting, 8-2

TRACEPOINT command, 8-2, J-12

Tracepoints,
restoring, 10-10, 10-11
saving, 10-7 to 10-9

Tracing,
active program blocks, 8-14 to

8-23
command list, 2-5
definit ion, 2-5, 8-1
entry, 8-11
features, 8-1 to 8-22
statement, 8-12 to 8-14
value, 3-16 to 3-18, 8-4 to

8-11

Transferring program control,
5-24

Trap, breakpoint, 5-3

TYPE command, 3-15, 6-12, 6-13,
J-12

Types of frames, 8-15 to 8-17

symbols)

System requirements, 1-2

Terms, 4-1 to 4-23

Terms, glossary of Debugger, K-l
to K-14

TRACEBACK command, 8-17 to 8-22,
J-l l , J-12

Tracepoint,
d e fi n i t i o n , 8 - 2
delet ing, 8-3

Uniquely defined program block,
4-3 to 4-5

UNWATCH command, 8-9, J-12

UNWIND command, 8-23, J-13

Unwinding call/return stack,
8-23

Upper bound, 6-5

User-owned call frame, 8-15

V-mode Symbolic Debugger, 13-11

Second Edition

DOC4033-193

Value tracing,
d e fi n i t i o n , 8 - 4
suppressing, 8-10, 8-11
with WATCH, 3-16 to 3-18, 8-4

to 8-11

Variables,
Debugger-defined, 4-6, 6-24 to

6-26
evaluating, 3-13, 3-14, 6-1 to

6-12
evaluating pointer, 6-11, 6-12
external, 4-6, 6-27
identifying, 4-10, 4-11
modifying, 3-15, 3-16, 6-13,

6-14
watching, 3-16 to 3-18, 8-4 to

8-11
watching pointer, 8-7, 8-8

-VERIFY_PROC option, 13-3

-VERIFYJSYMBCLS option, 13-2

VPSD, 13-11

VPSD command, 13-11, J-13

VTRACE command, 8-10, 8-11, J-13

WATCH command, 3-16 to 3-18, 8-4
to 8-8, J-13

Watch list,
d e fi n i t i o n , 8 - 4
displaying, 8-8
removing variables from, 8-9

Watching pointer variables, 8-7,
8-8

Watching variables, 3-16 to
3-18, 8-4 to 8-11

WATCHLIST command, 8-8, J-13

WHERE command, 5-23, 5-24, J-14

Wild character, 4-21

Second Edition

READER RESPONSE FORM

DOC4033-193 Source Level Debugger Users Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?
excellent very good

2. Please rate the document in the following areas:

too few

too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's
documentation catalog and ordering information? ves no

Name: Position:

Company:
Address:

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	About This Book
	ix
	x
	xi
	xii
	Part I
	Overview
	Chapter 1
	What is the Source Level Debugger?
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	Chapter 2
	Overview of Debugger Features
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	Part II
	Using the Debugger
	Chapter 3
	Getting Started
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	Chapter 4
	Conventions, Terms and Concepts
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	Chapter 5
	Breakpoints and Program Control
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	Chapter 6
	Data Manipulation
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	Chapter 7
	Single Stepping and Calling Program Blocks
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	Chapter 8
	Tracing
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	Chapter 9
	Customizing Your Debugger Commands -- Macros
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	Chapter 10
	Modifying and Saving Debugger Commands
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	Chapter 11
	Other Features
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	Part III
	Advanced Techniques and Features
	Chapter 12
	Advanced Macros
	12-1
	12-2
	Chapter 13
	Other Advanced Features
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	Appendixes
	Appendix A
	Sample Sessions With FORTRAN IV
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	Appendix B
	Sample Sessions With FORTRAN 77
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	Appendix C
	Sample Sessions With Pascal
	C-1
	C-2
	C-3
	C-4
	Appendix D
	Sample Sessions With PL/I Subset G
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	Appendix E
	Sample Sessions With COBOL 74
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	E-9
	E-10
	E-11
	Appendix F
	Sample Sessions With RPG II
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	Appendix G
	Sample Sessions With C
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	Appendix H
	Special Considerations
	H-1
	H-2
	Appendix I
	Strategies In Debugging
	I-1
	I-2
	I-3
	I-4
	Appendix J
	Summary of Debugger Commands
	J-1
	J-2
	J-3
	J-4
	J-5
	J-6
	J-7
	J-8
	J-9
	J-10
	J-11
	J-12
	J-13
	J-14
	Appendix K
	Glossary of Terms
	K-1
	K-2
	K-3
	K-4
	K-5
	K-6
	K-7
	K-8
	K-9
	K-10
	K-11
	K-12
	K-13
	K-14
	Appendix L
	Commands Listed By Chapter
	L-1
	L-2
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	Survey
	
	

